Experiences from Running the PanDA Pilot Factory

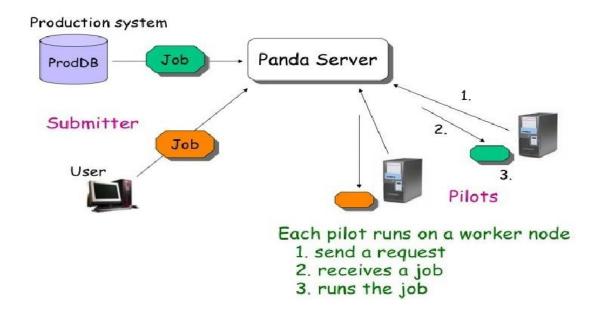
Xin Zhao

Brookhaven National Laboratory

OSG All Hands Meeting

Harvard Medical School, Boston, MA

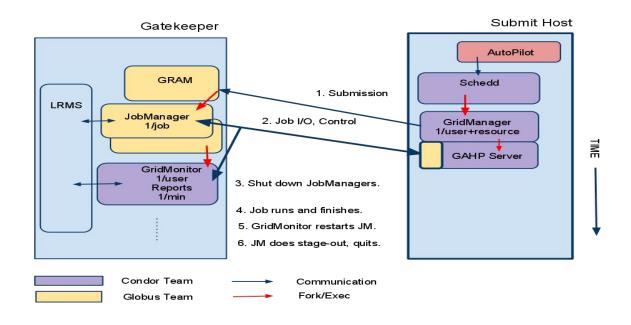
March, 2011



Outline

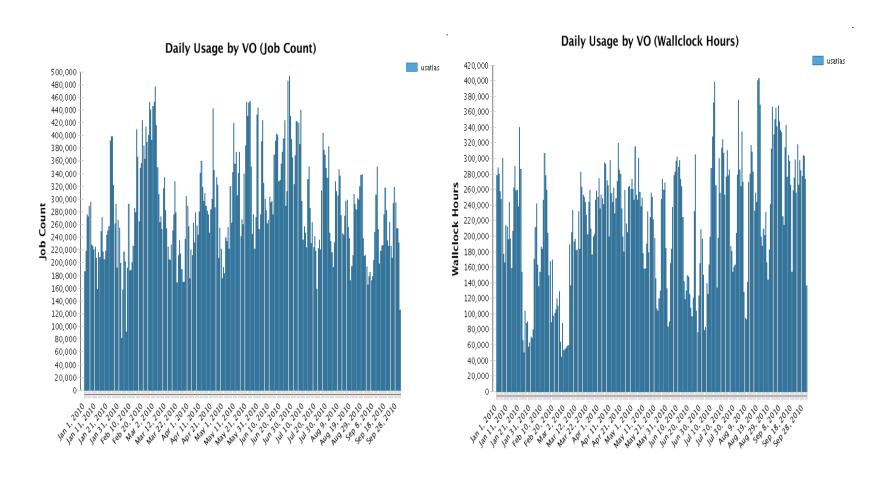
- PanDA Pilot Submission and Condor-G
- PanDA Pilot Submission at BNL ATLAS Tier1
- Scalability and Stability
- Monitoring

PanDA Pilot Submission and Condor-G


- PanDA (Production and Distributed Analysis)
 - ATLAS Workflow management system
 - Late-binding, pilot based system

PanDA Pilot Submission and Condor-G

- Condor-G
 - PanDA Pilot Submission uses Condor-G as the grid job scheduler


PanDA Pilot Submission at BNL T1

Submit Pilots to ATLAS US Cloud

- 92 PanDA queues at 43 gatekeepers, with HEPSPEC-06 ~ 111,000
- Full scale production has >10K real jobs running, daily peaked at 480K pilots
- 5 Condor-G submit hosts (3 primary), running
 Condor 7.4.4 right now.
- Stress test results
 - 50K jobs managed on one submit host;
 - 30K jobs submitted to one remote GT2 gatekeeper

PanDA Pilot Submission at BNL T1

Scalability and Stability

- Many improvements and enhancements implemented to make the system more stable and scalable
 - Thanks to Condor team for their constant support and prompt response
 - Below I will go through some of the major improvements, and best practices, in a Q&A mode.

Scalability and Stability (1)

- Q: how to keep a stable pilots pool
 - Late-binding model
 - Whenever a real job is activated, there'd better be a pilot to pick up and run it. Latency as short as possible
 - Always keep certain number of pilots pending on local batch systems
 - Fluctuation of pilots pool
 - Changes of site status or job status
 - Dip needs to be refilled quickly

Scalability and Stability (1)

- A: aggressive Condor-G throttle settings
 - GRIDMANAGER_MAX_PENDING_REQUESTS = 500
 - GRIDMANAGER MAX JOBMANAGERS PER RESOURCE = 200
 - GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE = 20000
 - GRIDMANAGER_MAX_PENDING_SUBMITS_PER_RESOURCE =
 1000000
 - GRIDMANAGER_JOB_PROBE_INTERVAL = 60
 - GRID_MONITOR_DISABLE_TIME = 300
 - GRIDMANAGER CHECKPROXY INTERVAL = 1800
 - GRIDMANAGER_MINIMUM_PROXY_TIME = 180
 - CRED_MIN_TIME_LEFT = 120
 - ENABLE GRID MONITOR = TRUE

Scalability and Stability (2)

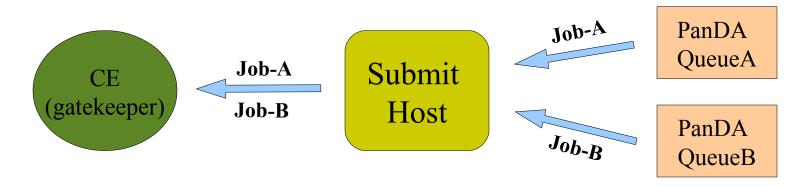
- Q: how not to overload/crash remote gatekeepers
 - Aggressive Condor-G throttle setting
 - potentially high load on remote CEs
 - GRIDMonitor helps reduce load
 - A lot of long running jobs is not an issue
 - Load still there when job starts up (stage-in) and finishes (stage-out)
 - CE will be hit hard if a lot of pilots come and go very fast, eg "empty" pilots or short real jobs.

Scalability and Stability (2)

- A: adjust pilot submission rate
 - Autopilot adjuster script
 - Automatically adjust pilot submission limit based on availability of real jobs
 - Avoid overloading CE with a lot of "empty" pilots (no real jobs to run)
 - Multi-job pilot
 - Pilot is configured to stay alive for a minimum period of time (60minutes), given there are still real jobs to run
 - Avoid overloading CE with short jobs

Scalability and Stability (3)

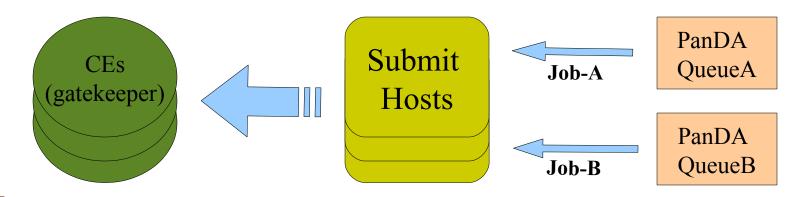
- Q: how to stabilize the overall pilot submission
 - Condor-G by default starts one gridmanager instance per user account, for all sites
 - Pilots are submitted using the same production account/certificate
 - "local" site issues can affect the overall throughput to all sites, served by the same submit host
 - A problematic CE
 - Regional network issue


Scalability and Stability (3)

- A: Multiple GridManager instances

 - GRIDMANAGER_SELECTION_EXPR = GridResource
 - A separate gridmanager instance per <remote site,user> pair
 - Throttle settings apply to each instance

Scalability and Stability (4)


- Q: how to avoid contention among PanDA queues
 - PanDA queues may compete in the same Condor-G "channel"
 - Channel: one gridmanager instance, defined by <CE,user,submit host> value

Scalability and Stability (4)

- A: create more "channels"
 - make more **<CE**, user, submit host> combinations
 - Multiple CEs per site, or multiple submit hosts per remote CE
 - assign PanDA queues among them

Scalability and Stability (4)

- A: another way to create more "channels"
 - Insert PanDA queue info into pilot job ClassAd and use GRIDMANAGER_SELECTION_EXPR expression
 - For example:
 - GRIDMANAGER_SELECTION_EXPR = PandaQueue
 - Will create a new gridmanager instance per PandaQueue value
 - In our to-do list, requires changes to autopilot factory, and needs more testing

Scalability and Stability (5)

- Q: how to stabilize each submission channel
 - A submission channel can get stuck
 - Can't (or too slow to) get jobs status from remote sites
 - Can't (or too slow to) submit new pilots
 - •
 - Many improvements and enhancements to tackle these problems

Scalability and Stability (5)

- A: deal with held jobs
 - Unconditional removal and cleanup of held pilots
 - Pilots are expendable, not real jobs
 - Not to waste cycle to retry them, which are often not recoverable
 - Introduce a new job attribute
 - +Nonessential = True

Scalability and Stability (5)

- A: Grid Monitor related improvements
 - Grid Monitor restart behavior adjustable
 - GRID_MONITOR_DISABLE_TIME
 - Cache jobs status in Grid Monitor
 - Patch globus jobmanagers to improve efficiency of jobs scanning and status update
 - Refined GridManager error handling to avoid flooding sites with the Grid Monitor jobs

Scalability and Stability (6)

- Some best practices
 - Caching condor_q command results in autopilot factory
 - reduce load to condor schedd on submit hosts
 - Reduce frequency of proxy renewal
 - Condor-G pushes renewed proxy to all remote jobs aggressively
 - Avoid hard-killing jobs from submit hosts
 - leave debris on remote sites

Monitoring

- Condor command to display grid resources
 - condor_status -grid
- Home made monitoring dashboard
 - Add time-integrated metric information
 - Historical information of submission
 - Rate of submission
 - Connected to nagios
 - proactively monitor and report problems in the production pilot factory

Monitoring

Monitoring dashboard snapshot (1)

RACF

The RACF Production Dashboard

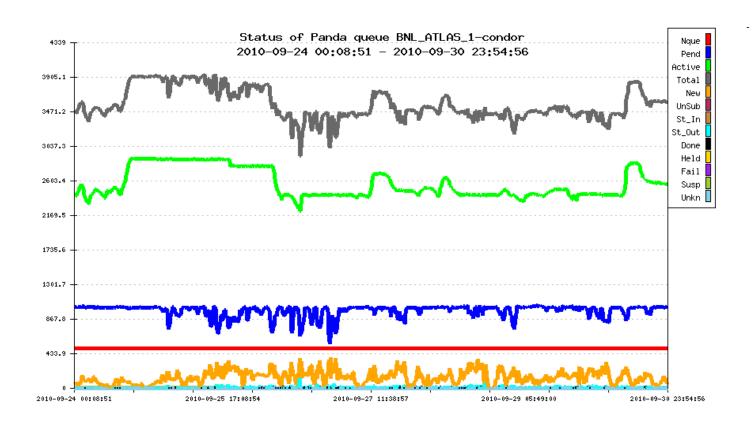
Main Page
Production System Overview
Panda Production Pilots
Panda Production Queues
Current Panda Jobs
Queues on Submit Hosts
BNL gatekeepers
BNL Gatekeepers
BNL Grid Ftp Servers
BNL Submit Hosts
NFS access time
BDII Status
Other monitoring links:
RACF Nagios
RACF Nagios Services Table

Current RSV status

Current Panda Jobs

Panda Queue name

Queues on machine gridui07.usatlas.bnl.gov; status as of 2010-10-01 18:34:52


ranaa_Qacac_name	10041	14 0 00	onsas	DC_111	Long	ACCIAC	bc_cac	Donc	IICIG	1 411	БаБр	OHEH	Mque
AGLT2-OSG-condor	150	0	0	10	107	32	1	0	91	0	0	0	50
AGLT2-condor	563	8	0	0	110	453	0	0	0	0	0	0	110
ANALY_BNL_ATLAS_1-condor	451	0	0	0	309	142	0	0	0	0	0	0	250
ANALY_LONG_BNL_ATLAS	798	6	0	0	155	643	0	0	0	0	0	0	150
ANALY_Tufts_ATLAS_Tier3-lsf	80	10	0	0	56	24	0	0	0	0	0	0	10
BNL_ATLAS_1-condor	1726	91	0	0	464	1259	0	0	0	0	0	0	500
BNL_ATLAS_2-condor	354	7	0	0	190	161	0	0	0	0	0	0	200
BNL_ITB_ATLAS_TEST-condor	2	2	0	0	0	0	0	2	0	0	0	0	1
BNL_ITB_Test1-condor	8	6	0	0	2	4	2	0	0	0	0	0	4
BNL_SITE_GK02-condor	350	0	0	0	350	0	0	0	0	0	0	0	50
FIU-PG-condor	70	0	10	0	0	0	0	0	60	0	0	0	10
Firefly_SBGRID-pbs	10	9	1	0	0	0	0	0	0	0	0	0	10
Harvard-East_SBGRID-condor	12	12	0	0	2	10	0	0	0	0	0	0	10
IU_OSG-pbs	1	1	1	0	0	0	0	0	0	0	0	0	1
LBNL_DSD_ITB-condor	15	12	0	0	0	14	0	1	0	0	0	0	10
MWT2_IU-pbs	1153	17	0	0	512	640	1	0	0	0	0	0	512
OSG_LIGO_PSU-pbs	130	0	130	0	0	0	0	0	0	0	0	0	10
OUHEP_ITB-condor	19	16	0	0	6	10	1	0	0	0	0	0	10
SBGrid-Harvard-East-condor	10	0	10	0	0	0	0	0	0	0	0	0	10
SBGrid-Harvard-Exp-condor	90	0	90	0	0	0	0	0	0	0	0	0	10
SWT2_CPB-pbs	120	0	0	0	20	100	0	0	0	0	0	0	20
TTU_TESTWULF_ITB	1956	0	0	0	54	1902	0	0	0	0	0	0	10
Tufts_ATLAS_Tier3-lsf	88	20	0	2	46	38	0	0	0	0	0	0	20
UCITB_EDGE7-pbs	16	10	0	0	11	4	1	0	0	0	0	0	10
UConn-OSG-condor	2100	10	0	1971	0	72	23	0	2028	0	0	0	50
UFlorida-IHEPA-condor	130	0	130	0	0	0	0	0	0	0	0	0	10
UFlorida-IHEPA-hg-atlas-condor	130	0	130	0	0	0	0	0	0	0	0	0	10
UFlorida-PG-condor	130	0	130	0	0	0	0	0	0	0	0	0	10
UFlorida-PG-pg-atlas-condor	12	0	0	0	10	0	0	0	0	0	2	0	10

New UnSub St In Pend Active St Out Done Held Fail Susp Unkn Nque

Monitoring

Monitoring dashboard snapshot (2)

Future Plan

- New version of AutoPilot Factory coming
- CREAM vs Condor-G test
 - Some preliminary results
 - More scalability and performance tests to do