
03/08/11 1

The Power of HTTP Proxy Caches

Dave Dykstra, Fermilab
dwd@fnal.gov

Work supported by the U.S. Department of Energy under contract No. DE‐AC02‐07CH11359

mailto:dwd@fnal.gov

03/08/11 2

Introduction

• Talk goal: encourage use of HTTP proxy caches
• Outline:
– What's good about them
– Application requirement: REST compliance
– Frontier database caching
– Caching file transfers
– CernVM FileSystem

03/08/11 3

What's good about HTTP caches

• HTTP is designed for internet-sized scaling
– Minimal overhead: request/response
– Designed to be cached

• HTTP caches can be easily inserted whereever
repeated requests occur, for better scaling
– Can be chosen by client (“proxy”) or by server

(“gateway”)

• HTTP caches require little maintenance
• Multiple implementations to choose from
– My favorite is squid

03/08/11 4

Application requirement: RESTful

• REpresentational State Transfer
• Defined by Roy Fielding in his PhD dissertation
• General architectural style derived from using a

subset of http strictly according to HTTP RFCs
– Roy was a principal author of HTTP RFCs

• Enables scaling, caching

03/08/11 5

REST essentials

• Essentials for HTTP-based cacheable protocol:
– Stateless service
• Every request independent
• No cookies
• No https (digital signatures for authentication are OK)

– Unless just for tunneling to scalable private-net server farm

– Use HTTP methods as originally intended
• Don't use POST to pass in complex parameters
• Use GET with a separate URL for every “resource”

– Set cache expiration times
• Varies by application

03/08/11 6

REST importants

• Important but less essential for an http-based
cacheable protocol:
– Use Last-Modified/If-Modified-Since or

ETag/If-None-Match
• Enables revalidating cache with simple NOT MODIFIED

response if nothing changed
• If answer has changed, it is returned immediately with no

protocol overhead

– Don't use '?' in URL
– Deploy with sufficient caching proxies

03/08/11 7

Frontier example

• Distributes read-only database SQL queries
– Updates are done with a different protocol (like most

of the RESTful cacheable systems I have seen)

• Developed for High Energy Physics “Conditions”
data with many readers of same data distributed
worldwide
– Used in production by CMS Offline & Online, ATLAS

Offline Analysis

• Ideal for caching

03/08/11 8

CMS Offline Frontier example

DB

Offline
Frontier
Servers

Tomcat+
Servlet+

Squid

Tier0
Squids

Wide
Area

Network

Wide
Area

Network

Tier0
Farm

Tier1, 2, 3
Squids

TierN
Farm

Tier1, 2,3
Squids

TierN
Farm

- Many copies of frontier_client in jobs on the farms
- Jobs start around the world at many different times
- Cache expirations vary from 5 minutes to a year

03/08/11 9

CMS Offline Frontier stats

• Average of 250 job starts per minute worldwide
• Average 500,000 total Frontier requests per

minute, aggregate average total 500MB/s
• The 3 central squids only get 6,500 total

requests per minute, and 0.7MB/s
– Factor of 77 improvement on requests and 715 on

bandwidth

• Vast majority of jobs read very quickly because
results are already cached in local squids

03/08/11 10

CMS Online Frontier example

DB

Online
Frontier
Servers

Tomcat+
Servlet+

Squid

- Blasts data to all 1400 worker nodes in parallel
- Hierarchy of squids on worker nodes
- Frontier servlet sends “Cache-Control: max-age=30”

Squids

03/08/11 11

CMS Online Frontier stats

• Roughly 100MB of data loaded to all 1400
nodes in parallel in about 30 seconds,
effectively an aggregate of almost 5GB/s

• Cache expires in 30 seconds so every run start
verifies that every query is up to date
– Most of the time, most of it is up to date so very little

is actually transferred over the network

03/08/11 12

Caching file transfers

• Simple http file transfer, via for example apache
and wget, can also benefit from same caching

• Last week Frontier servlet & client were
expanded to also transfer and cache files
– Advantages: robust retries on failures, and easy to

add to existing server & squid infrastructure

03/08/11 13

CernVM-FS

• CernVM File System (CVMFS) designed to
distribute slowly changing filesystem of software
– Mostly only additions, not changes

• HTTP URLs secure hash of contents of files
– Once cached, they never change
– Detection of tampering is trivial

• Indexes map filenames to hashes
– Digitally signed to prevent man-in-the-middle attack

• Accesses from local squid almost as fast as
local disk

03/08/11 14

Summary

• Use HTTP proxy caches in your applications
– Whenever the same information is needed in many

places
– Use locally deployed standard caches
• Already deployed at most sites participating in LHC

experiments

• Deploy squids at all OSG sites
– Suggest two types: production & opportunistic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

