
Using Pegasus 3.0 for data-based
workflows on the OSG

Mats Rynge

rynge@isi.edu

USC Information Sciences Institute

Pegasus: Planning for Execution in Grids

• Abstract Workflows - Pegasus input workflow description

• Workflow “high-level language”

• Only identifies the computation, devoid of resource descriptions, devoid of data
locations

• Pegasus

• Workflow “compiler” (plan/map)

• Target is DAGMan DAGs and Condor submit files

• Transforms the workflow for performance and
reliability

• Automatically locates physical locations for both
workflow components and data

• Provides runtime provenance

B B

D

A

B B

C C C C

How to generate a DAX

• Use the Pegasus Java, Perl, Python APIs

• Use Wings for semantically rich workflow
composition (http://www.isi.edu/ikcap/wings/)

• Write the XML directly

http://www.isi.edu/ikcap/wings/

Basic Workflow Mapping

• Select where to run the computations

• Change task nodes into nodes with executable descriptions

• Execution location

• Environment variables initializes

• Select which data to access

• Add stage-in nodes to move data to computations

• Add stage-out nodes to transfer data out of remote sites to
storage

• Add data transfer nodes between computation nodes that
execute on different resources

Additional Mapping Elements

• Add data cleanup nodes to remove data from remote sites when no longer
needed

• reduces workflow data footprint

• Cluster compute nodes in small computational granularity applications

• Add nodes that register the newly-created data products

• Provide provenance capture steps

• Information about source of data, executables invoked, environment
variables, parameters, machines used, performance

• Scale matters - today we can handle:

• 1 million tasks in the workflow instance (SCEC)

• 10TB input data (LIGO)

5

6

Original workflow: 15 compute nodes

devoid of resource assignment

41

85

10

9

13

12

15

7

Original workflow: 15 compute nodes

devoid of resource assignment

41

85

10

9

13

12

15

Assume the results of these computations are already available

8

Original workflow: 15 compute nodes

devoid of resource assignment
41

85

10

9

13

12

15

Resulting workflow mapped onto 3

Grid sites:

13 data stage-in nodes

11 compute nodes (4 reduced based

on available intermediate data)

8 inter-site data transfers

14 data stage-out nodes to long-term

storage

14 data registration nodes (data

cataloging)

9

4

83
7

10

13

12

15

Catalogs used for discovery

• To execute in a distributed environment Pegasus needs
to discover

• Data (the input data that is required by the workflows)

• Replica catalog, data registry, db, dax

• Executables (application executables already installed or can
that be dynamically staged)

• Transformation catalog, dax

• Site Layout (site services and environment)

• Site catalog

9

Discovery of Data

• Replica Catalog stores mappings between logical files
and their target locations.

• Interfaces with a variety of replica catalogs

• File based Replica Catalog

• useful for small datasets

• cannot be shared across users

• Database based Replica Catalog

• useful for medium sized datasets.

• can be used across users

Discovery of Site Layout

• Pegasus queries a site catalog to discover site layout

• Job submission points for different types of schedulers

• Data transfer servers

• Local Replica Catalogs where data residing in that site has to be
catalogued

• Site Wide Profiles like environment variables

• Work and storage directories

11

The pegasus-sc-client can pull the site information
from ReSS or OSGMM

Optimizations during Mapping

• Node clustering for fine-grained computations

• Can obtain significant performance benefits for some
applications (in Montage ~80%, SCEC ~50%)

• Data reuse in case intermediate data products are
available

• Performance and reliability advantages—workflow-level
checkpointing

• Data cleanup nodes can reduce workflow data footprint

• by ~50% for Montage, applications such as LIGO need
restructuring

14

Job clustering

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster_2cluster_1

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

Useful for small granularity jobs

Level-based

clustering

Vertical clustering Arbitrary

clustering

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 A bstract W orkflow

File f.d exists som ew here .

R euse it.

M ark Jobs D and B to delete
D elete Job D and Job B

Workflow Reduction (Data Reuse)

Data Cleanup

16

1.25GB versus 4.5 GB

Adding cleanup nodes to the workflow

LIGO Workflows

26%

improvement

56%

improvement

Full workflow:

185,000 nodes

466,000 edges

10 TB of input data

1 TB of output data.

166 nodes

17

Job Priorities – Overlapping Data Staging and Computations

• Pegasus assigns default priorities to jobs (new feature in 3.0)

• Compute jobs

• Based on what level the job is in the workflow (10, 20, …)

• Useful when running multiple workflows

• Auxiliary jobs

• Create dir – 800

• Stage in – 700

• Stage out – 900

• Cleanup – 1000

18

Jobs belonging to the same workflow can
run in different universes. For example:
compute jobs in “grid” and staging jobs

in “local”

Pegasus 3.1 Upcoming Features

• Advanced transfer features with Storage Servers

• Allows to share intermediate advanced storage infrastructure
with several remote sites

• No need for shared file system on local site

• Can be enabled or disabled based on compute site as well as file
level.

• Define metadata in DAX and populate automatically to a
given metadata server

• Notification hooks on tasks, DAX, DAGs events (maybe!)

19

QUESTIONS?

Pegasus: http://pegasus.isi.edu/

Email: pegasus@isi.edu

22

http://pegasus.isi.edu/
mailto:pegasus@isi.edu

