# MARS15 Simulations of Detector Backgrounds



Nikolai Mokhov <u>Fermil</u>ab

Muon Collider Physics Technical Meeting October 5, 2010





#### **Outline**

- Muon Collider Background Sources
- Suppressing Backgrounds
- MARS15 Simulations
- Source Term Studies
- Feeding Detector Simulations



## Sources of Background at Muon Colliders

- 1. IP  $\mu^+\mu^-$  collisions: Production x-section 1.34 pb at  $\sqrt{S}$  = 1.5 TeV (negligible compared to #3).
- 2. IP incoherent e<sup>+</sup>e<sup>-</sup> pair production: x-section 10 mb which gives rise to background of 3×10<sup>4</sup> electron pairs per bunch crossing (manageable with the nozzle, TBC)
- 3. <u>Muon beam decays:</u> Unavoidable bilateral detector irradiation by particle fluxes from beamline components and accelerator tunnel major source at MC: For 0.75-TeV muon beam of 2x10<sup>12</sup>, 4.3x10<sup>5</sup> dec/m per bunch crossing, or 1.3x10<sup>10</sup> dec/m/s for 2 beams.
- 4. <u>Beam halo:</u> Beam loss at limiting apertures; severe, but is taken care of by an appropriate collimation system far upstream of IP.



# Suppressing Backgrounds

- Collimating nozzles at IP, detector magnetic field assisted. Machine background reduction ~1000 times.
  Also can fully confine incoherent pairs if B<sub>z</sub> > 3 T.
- 2. High-field dipoles in IR with 5-σ tungsten masks between and liners inside: further substantial reduction of loads on central detectors; also help reduce Bethe-Heitler muon flux at large radii.
- Tungsten/iron/concrete shield at MDI and borated poly shells on the cones and detector inside (wherever possible).



## **Recent MARS15 Simulations**

- Compact lattice: C=2.5 km with B = 10 T
- Consistent IR design with realistic IR magnets and shielding
- Full MARS15 modeling to optimize shielding, with breakthrough in reduction of statistical weight spread
- Feeding detector simulators with new 1.5-TeV files



# **Muon Collider Parameters**

| E <sub>cms</sub>        | TeV                                               | 1.5 | 4  |
|-------------------------|---------------------------------------------------|-----|----|
| <b>f</b> <sub>rep</sub> | Hz                                                | 12  | 6  |
| n <sub>b</sub>          |                                                   | 1   | 1  |
| Δt                      | μS                                                | 10  | 27 |
| N                       | 1012                                              | 2   | 2  |
| $\epsilon_{x,y}$        | μ <b>m</b>                                        | 25  | 25 |
| L                       | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 1   | 4  |



## **IR & Chromatic Correction Section**



8-T dipoles in IR to generate large D at sextupoles to compensate chromaticity and sweep decay products; momentum acceptance 1.2%; momentum compaction factor of -1.5x10<sup>-5</sup>; dynamic aperture sufficient for transverse emittance of 50  $\mu$ m; under engineering constraints. Iterative studies on lattice and MDI with magnet experts: High-gradient (field) large-aperture short Nb<sub>3</sub>Sn quads and dipoles.



## MARS15 Modeling

- Segment of the lattice  $|S| < S_{max}$ , where  $S_{max} = 250$  m, implemented in MARS15 model with Nb<sub>3</sub>Sn quads and dipoles with masks in interconnect regions.
- Detailed magnet geometry, materials, magnetic fields maps, tunnel, soil outside and a simplified experimental hall plugged with a concrete wall.
- Detector model with  $B_z = 3.5$  T and tungsten nozzle in a BCH<sub>2</sub> shell, starting at ±6 cm from IP with R = 1 cm at this z.
- 750GeV bunches of 2×10<sup>12</sup> μ<sup>-</sup> and μ<sup>+</sup> approaching IP are forced to decay at  $|S| < S_{max}$ , where  $S_{max} = 25$  to 250 m at 4.28×10<sup>5</sup> / m rate.
- All physics processes with cutoff energies optimized for materials & particle types, varying from 2 GeV at ≥100 m to 0.025 eV in the detector.



## **Detector Model and Source Term**



Sophisticated shielding: W, iron, concrete & BCH<sub>2</sub>



Source term at black hole to feed detector simulation groups: ILCRoot (INFN), Fast MC (FNAL) and Icsim



# Tungsten Nozzle in BCH<sub>2</sub> Shell





### 1. Minimize it $(20^{\circ} \rightarrow 10^{\circ})$

- Top production in forward regions as CoM energy goes up
- Asymmetries are more pronounced in forward regions
- $Z' \rightarrow ttbar$
- Final states with many fermions (e.g. SM tt events) are hardly ever contained in the central detector

#### **Instrument it**

- Forward calorimeter
- Lumi-cal a'la ILC (40-140 mrad) for precise measurement of the int. luminosity (∆L/L ~ 10<sup>-3</sup>)
- Beam-cal at smaller angles for beam diagnostics



## **Particle Tracks in IR**





## **Source Tagging: Photons and Neutrons**







# Source Tagging: Charged Hadrons & Muons







# **Load to Detector: Optimizing Nozzle**

Number of particles per bunch crossing entering detector, starting from MARS source term for  $S_{max}$ =75m

| Particle       | Minimal 0.6-deg        | 10-deg                |
|----------------|------------------------|-----------------------|
| Photon         | 1.5 x 10 <sup>11</sup> | 1.8 x 10 <sup>8</sup> |
| Electron       | 1.4 x 10 <sup>9</sup>  | 1.2 x 10 <sup>6</sup> |
| Muon           | 1.2 x 10 <sup>4</sup>  | $3.0 \times 10^3$     |
| Neutron        | 5.8 x 10 <sup>8</sup>  | 4.3 x 10 <sup>7</sup> |
| Charged hadron | 1.1 x 10 <sup>6</sup>  | 2.4 x 10 <sup>4</sup> |

0.6-deg 10-deg

No time cut applied, can help substantially

X:Z=1:20



#### **Neutron and Photon Fluence**

Fluence per bunch crossing, starting from MARS source term for  $S_{max} = 75$  m. Compared to best 20-deg '96 configuration, peak values are down 5-10 times for all particles but photons.

#### Neutron peak/yr = $0.1xLHC@10^{34}$







## **Absorbed Dose (vs LHC)**

#### Total absorbed dose in Si

## Peak at r=4 cm:

MC: 0.1 MGy/yr CMS: 0.2 MGy/yr @10<sup>34</sup>







# **Energy Flux into Ecal and Hcal vs Rapidity**





Peak: ~1 GeV / 2x2 cm<sup>2</sup> cell with  $\sigma_F$  ~ 30 MeV

Peak: ~1.5 GeV / 5x5 cm<sup>2</sup> cell with  $\sigma_F$  ~ 80 MeV



## **Reducing Weight Fluctuations**

Statistical weight spread has been substantially reduced over last three months. Internal MARS weight fluctuations came predominantly from modeling of low-energy electromagnetic and hadronic showers as well as from photo- and electro-nuclear hadron and muon production algorithms.

Now these are user-controlled by materialdependent switches between exclusive, inclusive and hybrid modes.



# **Example: EMS**





## **Exclusive**



## Hybrid-10



Hybrid-20





# Log<sub>10</sub>W vs Particle ID

#### Divide by 5.1



#### Divide by 139





## **Weight Distributions**



 $Log_{10} p_{\gamma}$ 



# Neutrons/cm<sup>2</sup> Entering Detector vs Z



Muon beam approaching IP from the left



# Photons/cm<sup>2</sup> Entering Detector vs Z



Muon beam approaching IP from the left



### **MDI** Activities

IR lattice, magnet design, MARS15
 developments and modeling, optimization of
 shielding for detector and magnets, source
 term modeling on the MDI surface:

N. Mokhov, Y. Alexahin, E. Gianfelice-Wendt, V. Kashikhin, S. Striganov, A. Zlobin

Feeding detector simulation (so far):

ILCRoot 4<sup>th</sup> concept (C. Gatto group & N. Terentiev) and Fast Monte-Carlo (S. Mrenna)



## **Summary**

- MARS15 model for a consistent IR design with realistic IR magnets and optimized shielding is up and running, with encouraging results on 1.5-TeV MC detector backgrounds
- Breakthrough in reduction of statistical weight spread allows for much easier analysis and feeding detector simulators
- New high-statistics files will be available in October 2010
- Detector model to be adjusted to match the cone

