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 primary goals are to provide needed Design & Simulation

(D&S) effort to
- produce a design report for a neutrino factory (NF) by 2014

- determine feasibility of a multi-TeV muon collider (MC) by 2016
* provide detailed descriptions of major facility subsystems
* optimize subsystem performance
* do end-to-end simulations of beam behavior
e estimate uncertainties in machine performance
* determine tolerances on machine parameters
* provide required part counts for preliminary costing
* identify items that need additional R&D
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Example 1.5 TeV MC parameters

proton driver energy (GeV) 8
proton driver power (MW) 4
proton driver repetition rate (Hz) 15
L beam energy (TeV) 0.75
1L per bunch (10%?) 2
€y (HM) 25
g (Mm) 70
energy spread in collider ring (%) 0.1
B* (cm) 1
Avg. luminosity (103* cm2s?) 1.25
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* PD group closely follows developments on Project X
» compatibility with NF/MC is one of the Project X design requirements
* MAP effort addresses upgrades needed to meet NF and MC specs
* initial design concept done by Muons Inc with funding from Project X
- Project X upgrade to ¥4 MW
- accumulator, compressor rings for proton bunch structure
- trombone & funnel optics at target for MC
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* increasing power of Project X beam to 4 MW
- study increasing Project X current, pulse duration, rep rate

* injection into the accumulator ring
- study accumulating many turns via charge-stripping of H beam
- feasibility of stripping techniques
- methods to prevent overheating
* producing a ~2 ns rms proton bunch at the target
- challenging goal for 8 GeV, high intensity beam
- design bunch compression ring
- design trombone & funnel optics to target
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* target system = Hg jet target + tapered solenoid

+shielding + beam dump + infrastructure
- have a well-developed concept
- many details benchmarked by the MERIT experiment

* ongoing effort on magnetohydrodynamic simulations
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* understand shape distortions and possible cavitation in the Hg jet
- improved nozzle design

* understand differences in energy deposition
between MARS and Fluka
* shielding the superconducting magnets near the target

- reduce heat loads on cryogenic system
- heat removal from shielding

* target facility engineering design
- e.g., magnets, dump, beam windows, mercury plumbing, remote handling
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* FE beam channel = decay channel + buncher + phase rotation + NF cooling

e problems with RF in magnetic field complicates these designs (next talk)
1. maximum gradient in vacuum-filled cavities falls off with increasing B
2. gradient OK in gas-filled cavities, but effects of intense beam unknown

* this has required us to study many modified channel designs
e.g., gas-filling (hybrid), magnetic insulation, bucked lattices

* have a new baseline design
- optimized for 8 GeV protons on target

- fewer 1 bunches in the bunch train

» NF baseline version
p e
S v e W
FE| N\
T:i!l Seiensid Drift Buncher Rotator Cooler
“180m ~60.7m 7 iim £2m ~80 m
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e compare pion production codes, benchmark to HARP, MIPP
* removing protons and electrons in beam from target
* understanding RF breakdown mechanisms

- effect of magnetic field on vacuum-filled cavities
- effect of beam on gas-filled cavities

* incorporate solution to RF breakdown problem in channel design
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 our proposed technique for cooling muon beams is ionization cooling
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* cooling from dE/dx, heating from scattering
e~ B/ (B Ly dE/dx)

e want strong focusing - low B;

e hydrogen and LiH used for absorbers

* typical L momentum ~ 200 MeV/c

* longitudinal cooling requires emittance
exchange

* requires a dispersive channel

* heating from straggling, curvature of dE/dx
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* cooling by ~10° in g, is one of most challenging requirements for MC
* cooling systems = 6D cooling + final transverse cooling + auxiliary systems
* auxiliary system
- charge separation & recombination
- bunch merging
* we have written new codes, ICOOL & G4beamline, for cooling channel design
* we have developed several scenarios for reaching this cooling goal

Merge to single Initial

Phase Rotate
bunches to |2 bunches™ |

100 Final

Charge Charg,fe -
recombination’, separation

Trans
1.0 L Cooling in

Example
cooling scenario

Longitudinal emittance (mm)
6

6D Cooling
50 T Solenoids before merge
6D Cooling
- aftel mel ge
O.I I Lo g il I P 1 1 paaail
0.1 I 0 10

Transverse emittance (mm)

\

Richard Fernow 12



o Pccerg,,
S ¥ A
&ggglggmq Cooling Status: 6D cooling N%(

- we have three potential designs for 6D cooling
- Guggenheim
easy engineering access
- Helical Cooling Channel (HCC)
gas may allow using high RF gradient
- Helical FOFO-snake
transmits both charges

* simulations show we can reach g;y ~ 0.4 mm, g, ~ 1 mm
with Guggenheim and HCC channels
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alternating solenoids absorbers RF cavities
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* a high-field solenoid channel can provide required final cooling
- preliminary simulations with 40 and 50 T show it can reach g;,=25 um goal
- transmission is reduced at 40 T, but it still looks acceptable
 other options
- Parametric lonization Cooling channel + REMEX
- Li lens channel
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* incorporate solution to problem of RF in magnetic field in cooling
channel designs
* understand dependence of final cooling channel performance
on the solenoid field strength
 design auxiliary cooling systems
- charge separation with bent solenoid channel will probably work
- compare bunch recombination with planar wigglers and helical channels

e simulation code development
- upgrade ICOOL and G4beamline to follow cooling developments

* do end-to-end simulation of cooling channel
- simulate all missing stages of channel, auxiliary systems, matching sections

* study collective effects in absorbers
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have a 25 GeV accelerator design for IDS-NF
Rapid Cycling Synchrotron (RCS) is preferred choice
for the high energy (750 GeV) accelerator
- gives largest number of passes through RF system
RLA is the other option for high energy acceleration

0.1f NC
[ QF SC QD
0.0F
E) 1IO 2I0 3I0
0.9-3.6 GeV Linac to Dimensions in m
e Al —) M RCS half-cell
3.6-12.6 GeV RLA act in unison at extraction

12.6-25 GeV EFAG
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* study feasibility of 25 GeV accelerator design for MC and NF
* study feasibility of RCS concept for high energy acceleration

- basic lattice design
- simulations with high synchrotron tune
- study effect of tune on collective effects

» design auxiliary accelerator systems
- e.g., injection, extraction, RF

e study effects of 2 1012 muons in a bunch
- loading RF cavities, wakefields
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* have a preliminary 1.5 TeV collider ring design
* looks encouraging so far: large momentum acceptance, good dynamic aperture

* helped by u lifetime limits us to ~1000 turns
e started working with SciDAC group on beam-beam simulations

Beam energy TeV 0.73

Average luminosity / 1P 10 /em?/s 1.25

Number of IPs, N, 2

Circumference, C km 2.5

£ cm 1 Recent collider
Momentum compaction, &, 105 -1.5 ring example
Normalized emittance, £, T-mm-mrad 25

Momentum spread % 0.1

Bunch length, o, cm 1

Number of muons / bunch 1012 2

Beam-beam parameter / P, & 0.09

RF vaoltage at 800 MHz WV 16

Synchrotron tune 0.0008

Repetition rate Hz 15
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* |attice design
- need U collimation scheme, B* tuning section

* beam dynamics studies
- tracking with fringe fields, systematic multipole correction
- impedance, wakefield studies
* study feasibility of obtaining * =1 cm
- effects of alignment, jitter, other errors
- stability of coherent beam-beam oscillations
- plasma beam-beam compensation?
* examine effects of electrons from p decays around ring
- study heat load, radiation damage
* design auxiliary ring systems
- RF, injection, abort, closed orbit, diagnostics, ...
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* MIDI group was set up to coordinate work on

- collider ring design

- detector design

- physics analysis

- ring magnet design
* requires iterating separate designs until they work together
* have made a preliminary MARS15 model of IR
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* simulation of radiation levels
- determine component lifetime, heating
 design of IR absorber cones
- detector background
e control of beam halo
- can’t collimate, need deflection system
* design of auxiliary IR systems
- beam pipe, cryogenics
* quantify significance of off-site neutrino-induced radiation
- should be OK at 1.5 TeV
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Date Milestone Deliverable
FY10 specify target initial configuration MAP Rev, Des Report
FY11 specify front end initial configuration MAP Rev, Des Report
specify NF u acceleration initial configuration MAP Rev, Des Report
FY12 specify collider ring initial configuration Ext Rev, Des Report
specify cooling initial configuration MAP Rev, Des Report
FY13 specify proton driver initial configuration Ext Rev, Des Report
specify MC u acceleration initial configuration MAP Rev, Des Report
FY14 finish D&S for Interim MC DFS report Formal Report
finish D&S for Final IDS-NF RDR report Formal Report
FY15 provide specifications & parts count for MC costing Design Report
FY16 provide description of remaining MC R&D items Design Report

finish D&S for Final MC DFS report

Formal Report

Richard Fernow
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* determining the feasibility of a muon collider will take a major effort

* there are many interesting machine questions that need to be examined
* MAP proposal aims to increase our current effort on MC machine R&D

* but at present we only have a small number of people (~9 FTEs)

* we welcome new collaborators to help out
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