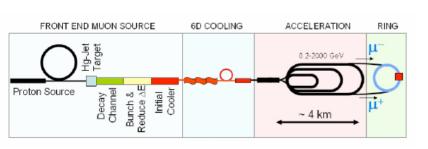


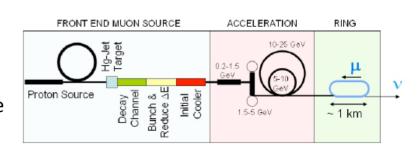
Muon Collider Design & Simulation R&D Opportunities

Richard Fernow
Brookhaven National Laboratory

Informal Exploratory Meeting
Fermilab
6 October 2010

Muon Collider Design & Simulation Goals

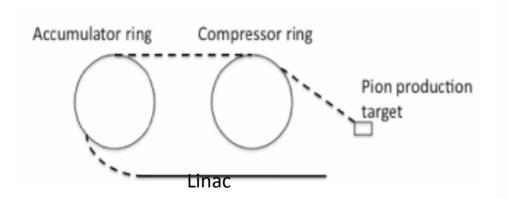

- primary goals are to provide needed Design & Simulation (D&S) effort to
 - produce a design report for a neutrino factory (NF) by 2014
 - determine feasibility of a multi-TeV muon collider (MC) by 2016
- provide detailed descriptions of major facility subsystems
- optimize subsystem performance
- do end-to-end simulations of beam behavior
- estimate uncertainties in machine performance
- determine tolerances on machine parameters
- provide required part counts for preliminary costing
- identify items that need additional R&D

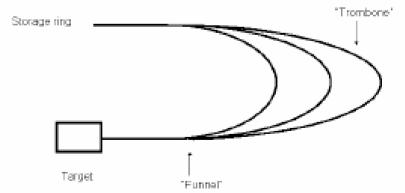

Present Design Configurations

	MC	NF
proton driver	upgraded Project X	same
target	liquid Hg jet in 20 T	same
front end channel	enhanced Study 2a	same
6D cooling	3 good candidates	
final cooling	high field solenoid	
LE μ acceleration	linac + 2 RLA + FFAG	same
HE μ acceleration	rapid-cycling synchrotrons	
final ring	2.5 km circumference collider	racetrack, long straight
performance	$\geq 10^{34} / \text{cm}^2 \text{ s}$	10 ²¹ total μ decays/yr for both signs

Schematic Not to scale

Example 1.5 TeV MC parameters

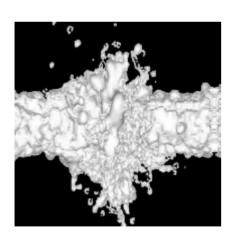

proton driver energy (GeV)	8
proton driver power (MW)	4
proton driver repetition rate (Hz)	15
μ beam energy (TeV)	0.75
μ per bunch (10 ¹²)	2
ε _{τN} (μm)	25
ε _{LN} (mm)	70
energy spread in collider ring (%)	0.1
β* (cm)	1
Avg. luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1.25

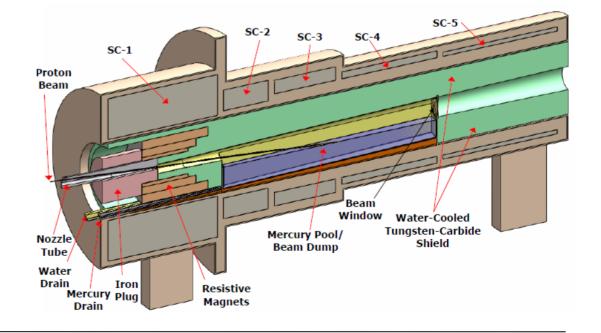


Proton Driver Status

- PD group closely follows developments on Project X
- compatibility with NF/MC is one of the Project X design requirements
- MAP effort addresses upgrades needed to meet NF and MC specs
- initial design concept done by Muons Inc with funding from Project X
 - Project X upgrade to ~4 MW
 - accumulator, compressor rings for proton bunch structure
 - trombone & funnel optics at target for MC

Proton Driver R&D Tasks

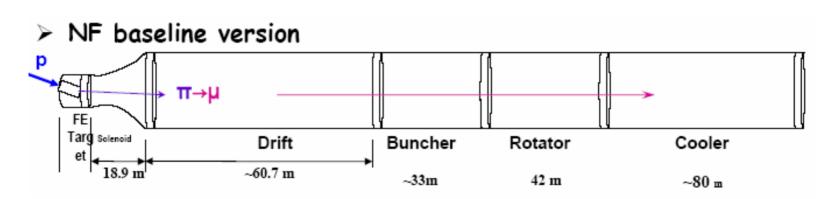

- increasing power of Project X beam to 4 MW
 - study increasing Project X current, pulse duration, rep rate
- injection into the accumulator ring
 - study accumulating many turns via charge-stripping of H⁻ beam
 - feasibility of stripping techniques
 - methods to prevent overheating
- producing a ~2 ns rms proton bunch at the target
 - challenging goal for 8 GeV, high intensity beam
 - design bunch compression ring
 - design trombone & funnel optics to target


Target System Status

- target system ≡ Hg jet target + tapered solenoid
 +shielding + beam dump + infrastructure
 - have a well-developed concept
 - many details benchmarked by the MERIT experiment
- ongoing effort on magnetohydrodynamic simulations

FRONTIER simulation

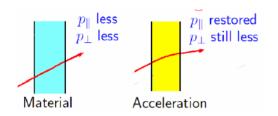
Target R&D Tasks

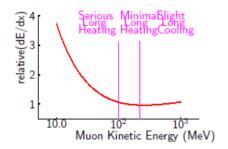

- understand shape distortions and possible cavitation in the Hg jet
 - improved nozzle design
- understand differences in energy deposition between MARS and Fluka
- shielding the superconducting magnets near the target
 - reduce heat loads on cryogenic system
 - heat removal from shielding
- target facility engineering design
 - e.g., magnets, dump, beam windows, mercury plumbing, remote handling

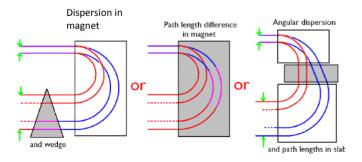
Front End Status

- FE beam channel ≡ decay channel + buncher + phase rotation + NF cooling
- problems with RF in magnetic field complicates these designs (next talk)
 - 1. maximum gradient in vacuum-filled cavities falls off with increasing B
 - 2. gradient OK in gas-filled cavities, but effects of intense beam unknown
- this has required us to study many modified channel designs
 - e.g., gas-filling (hybrid), magnetic insulation, bucked lattices
- have a new baseline design
 - optimized for 8 GeV protons on target
 - fewer μ bunches in the bunch train

Front End R&D Tasks

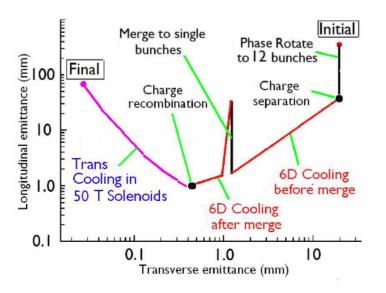

- compare pion production codes, benchmark to HARP, MIPP
- removing protons and electrons in beam from target
- understanding RF breakdown mechanisms
 - effect of magnetic field on vacuum-filled cavities
 - effect of beam on gas-filled cavities
- incorporate solution to RF breakdown problem in channel design




Ionization Cooling

our proposed technique for cooling muon beams is ionization cooling

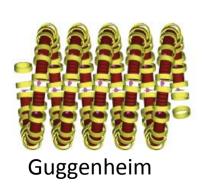
- cooling from dE/dx, heating from scattering $\epsilon_{TN}^{eq} \sim \beta_T / (\beta L_R dE/dx)$
- want strong focusing \rightarrow low β_T
- hydrogen and LiH used for absorbers
- typical μ momentum ~ 200 MeV/c

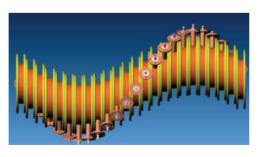

- longitudinal cooling requires <u>emittance</u> <u>exchange</u>
- requires a dispersive channel
- heating from straggling, curvature of dE/dx

Cooling Overview

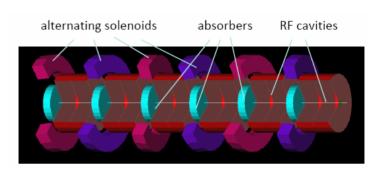
- cooling by ~10⁶ in ε_{6N} is one of most challenging requirements for MC
- cooling systems = 6D cooling + final transverse cooling + auxiliary systems
- auxiliary system
 - charge separation & recombination
 - bunch merging
- we have written new codes, ICOOL & G4beamline, for cooling channel design
- we have developed several scenarios for reaching this cooling goal

Example cooling scenario


Cooling Status: 6D cooling

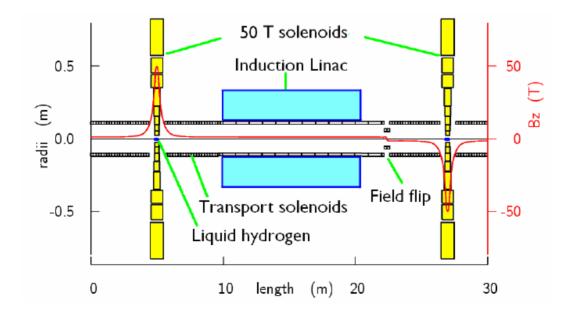


- we have three potential designs for 6D cooling
 - Guggenheim


easy engineering access

- Helical Cooling Channel (HCC)
 gas may allow using high RF gradient
- Helical FOFO-snake
 transmits both charges
- simulations show we can reach ϵ_{TN} ~ 0.4 mm, ϵ_{LN} ~ 1 mm with Guggenheim and HCC channels

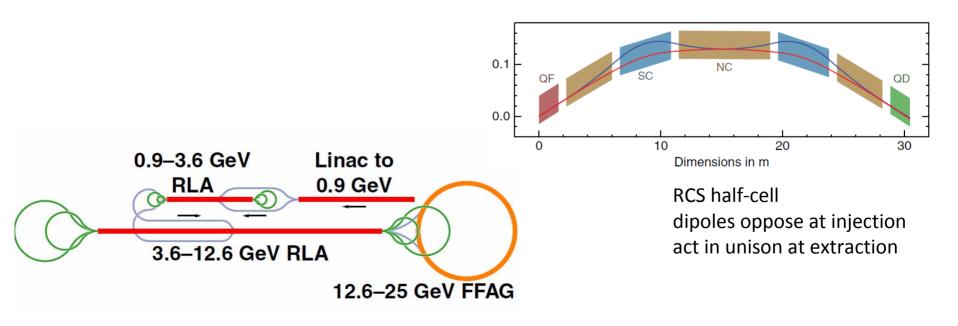
HCC


FOFO-snake

Cooling Status: final cooling

- a high-field solenoid channel can provide required final cooling
 - preliminary simulations with 40 and 50 T show it can reach ϵ_{TN} =25 μm goal
 - transmission is reduced at 40 T, but it still looks acceptable
- other options
 - Parametric Ionization Cooling channel + REMEX
 - Li lens channel

Cooling R&D Tasks


- incorporate solution to problem of RF in magnetic field in cooling channel designs
- understand dependence of final cooling channel performance on the solenoid field strength
- design auxiliary cooling systems
 - charge separation with bent solenoid channel will probably work
 - compare bunch recombination with planar wigglers and helical channels
- simulation code development
 - upgrade ICOOL and G4beamline to follow cooling developments
- do end-to-end simulation of cooling channel
 - simulate all missing stages of channel, auxiliary systems, matching sections
- study collective effects in absorbers

μ Acceleration Status

- have a 25 GeV accelerator design for IDS-NF
- Rapid Cycling Synchrotron (RCS) is preferred choice for the high energy (750 GeV) accelerator
 - gives largest number of passes through RF system
- RLA is the other option for high energy acceleration

μ Acceleration R&D Tasks

- study feasibility of 25 GeV accelerator design for MC and NF
- study feasibility of RCS concept for high energy acceleration
 - basic lattice design
 - simulations with high synchrotron tune
 - study effect of tune on collective effects
- design auxiliary accelerator systems
 - e.g., injection, extraction, RF
- study effects of 2 10¹² muons in a bunch
 - loading RF cavities, wakefields

Collider Ring Status

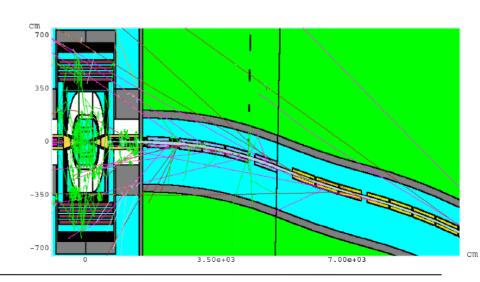
- have a preliminary 1.5 TeV collider ring design
- looks encouraging so far: large momentum acceptance, good dynamic aperture
- helped by μ lifetime limits us to ~1000 turns
- started working with SciDAC group on beam-beam simulations

Beam energy	TeV	0.75
Average luminosity / IP	10 ³⁴ /cm ² /s	1.25
Number of IPs, $N_{\rm IP}$	-	2
Circumference, C	km	2.5
β^*	cm	1
Momentum compaction, $\alpha_{_{p}}$	10-5	-1.5
Normalized emittance, $\varepsilon_{\!\scriptscriptstyle \perp \!\scriptscriptstyle N}$	π-mm-mrad	25
Momentum spread	%	0.1
Bunch length, $\sigma_{\!_{s}}$	cm	1
Number of muons / bunch	1012	2
Beam-beam parameter / IP, ζ	-	0.09
RF voltage at 800 MHz	MV	16
Synchrotron tune	-	0.0006
Repetition rate	Hz	15

Recent collider ring example

Richard Fernow

Collider Ring R&D Tasks


- lattice design
 - need μ collimation scheme, β^* tuning section
- beam dynamics studies
 - tracking with fringe fields, systematic multipole correction
 - impedance, wakefield studies
- study feasibility of obtaining $\beta^* = 1$ cm
 - effects of alignment, jitter, other errors
 - stability of coherent beam-beam oscillations
 - plasma beam-beam compensation?
- examine effects of electrons from μ decays around ring
 - study heat load, radiation damage
- design auxiliary ring systems
 - RF, injection, abort, closed orbit, diagnostics, ...

Machine-Detector Interface Status

- MDI group was set up to coordinate work on
 - collider ring design
 - detector design
 - physics analysis
 - ring magnet design
- requires iterating separate designs until they work together
- have made a preliminary MARS15 model of IR

Machine-detector interface R&D Tasks

- simulation of radiation levels
 - determine component lifetime, heating
- design of IR absorber cones
 - detector background
- control of beam halo
 - can't collimate, need deflection system
- design of auxiliary IR systems
 - beam pipe, cryogenics
- quantify significance of off-site neutrino-induced radiation
 - should be OK at 1.5 TeV

D&S Milestones & Deliverables

Date	Milestone	Deliverable
FY10	specify target initial configuration	MAP Rev, Des Report
FY11	specify <u>front end</u> initial configuration specify <u>NF μ acceleration</u> initial configuration	MAP Rev, Des Report MAP Rev, Des Report
FY12	specify <u>collider ring</u> initial configuration specify <u>cooling</u> initial configuration	Ext Rev, Des Report MAP Rev, Des Report
FY13	specify <u>proton driver</u> initial configuration specify <u>MC μ acceleration</u> initial configuration	Ext Rev, Des Report MAP Rev, Des Report
FY14	finish D&S for Interim MC DFS report finish D&S for Final IDS-NF RDR report	Formal Report Formal Report
FY15	provide specifications & parts count for MC costing	Design Report
FY16	provide description of remaining MC R&D items finish D&S for Final MC DFS report	Design Report Formal Report

Richard Fernow 22

Summary

- determining the feasibility of a muon collider will take a major effort
- there are many interesting machine questions that need to be examined
- MAP proposal aims to increase our current effort on MC machine R&D
- but at present we only have a small number of people (~9 FTEs)
- we welcome new collaborators to help out