FermiGrid The Fermilab Campus Grid 28-Oct-2010

Keith Chadwick

Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359

Fermilab – Pre Campus Grid

- Multiple "siloed" clusters, each dedicated to a particular stakeholder:
 - CDF 2 clusters, \sim 2,000 slots
 - DO 2 clusters, ~2,000 slots
 - CMS 1 cluster, \sim 4,000 slots
 - GP 1 cluster, \sim 500 slots
- Difficult to share:
 - When a stakeholder needed more resources, or did not need all of their currently allocated resources, it was extremely difficult to move jobs or resources to match the demand.
- Multiple interfaces and worker node configurations:
 - CDF Kerberos + Condor
 - DO Kerberos + PBS
 - CMS Grid + Condor
 - GP Kerberos + FBSNG

FermiGrid – the Fermilab Campus Grid

- Site Wide Globus Gatekeeper (FNAL_FERMIGRID).
- Centrally Managed Services (VOMS, GUMS, SAZ, MySQL, MyProxy, Squid, Gratia Accounting, etc.)
- Compute Resources are "owned" by various stakeholders:

Compute Resources	# Clusters	# Gatekeepers	Batch System	# Batch Slots
CDF	3	5	Condor	5685
D0	2	2	PBS	5305
CMS	1	4	Condor	6904
GP	1	3	Condor	1901
Total	7	15	n/a	~19,000
Sleeper Pool	1	2	Condor	~14,200

FermiGrid – Architecture

28-Oct-2010

Measured Service Availability for the Past Year*

Service	Availability	Downtime
VOMS-HA	100%	0m
GUMS-HA	100%	0m
SAZ-HA (gatekeeper)	100%	0m
Squid-HA	99.988%	59.97m
MyProxy-HA	99.985%	78.80m
ReSS-HA	99.979%	107.96m
Gratia-HP	99.616%	2,014.32m
Database-HA	99.867	697.73m

Measured Average Occupancy and Utilization for the Past Year

Cluster	Average # of Batch Slots	Raw Occupancy Avg/Max	Effective Utilization Ang/Max
CDF	5,574	88.9%/100%	63.1%/97.4%
CMS	7,194	67.8%/99.9%	55.0%/99.9%
D0	5,284	70.8%/98.8%	46.5%/98.5%
GP	1,793	74.9%/99.2%	69.8%/99.9%
Total	19,849	74.9%/99.3%	56.2%/93.9%

FermiGrid – Evolution not Revolution

- We did not start with a massive project to transition to a [Campus] Grid infrastructure overnight.
- FermiGrid was commissioned over roughly a 18 month interval:
 - Ongoing discussions with stakeholders,
 - Establish initial set of central services based on these discussions [VOMS, GUMS],
 - We worked with each stakeholder to transition their cluster(s) to use the Grid infrastructure,
 - Periodically review the set of central services and deploy additional services as necessary/appropriate [SAZ, MyProxy, Squid, etc.].

FermiGrid -> FermiGrid-HA -> FermiGrid-HA2 Evolution

- If you have centrally provided services [eg. GUMS, SAZ] to multiple independent clusters, then you will eventually need to implement some sort of high availability service configuration.
 - Don't have to do this right off the bat, but it is useful to keep in mind when designing and implementing services
- FermiGrid -> FermiGrid-HA:
 - The high availability (HA) services were implemented when the growth and demand for the services showed that they were needed;
- We are now planning for FermiGrid-HA2:
 - HA2 will allow us to offer a geographically separated set of HA services that will survive an individual building power outage.

Conclusions

- Campus Grids offer significant cost savings.
 - FermiGrid has been operating as a Campus Grid for ~5 years.
 - We have made extensive use of "onsite" opportunistic running.
- Campus Grids do require a bit more infrastructure to establish and support.
 - This can be added incrementally.
 - Virtualization can be used to significantly lower the hardware cost of the additional infrastructure.
- FermiGrid took advantage of the onsite Kerberos Certificate Authority infrastructure to implement the "fermilab" umbrella VO.
- Many large higher education and research organizations have already deployed similar infrastructure (Shibboleth, InCommon, CiLogin–CA, etc.)
 - These can be leveraged to provide the necessary underpinnings for a Campus Grid.
- Campus Grids can also be integrated into larger Grid organizations (such as the Open Science Grid or TeraGrid) to give your community access to larger or specialized resources.
 - Of course it's nice if you are also willing to make your unused resources available for opportunistic access.

Fin

• Any Questions?

Other Considerations

- You will likely want to tie your (? centrally managed?) administration/staff/ faculty/student computer account data into your Campus Grid resources.
 - FermiGrid has implemented automated population of the "fermilab" virtual organization (VO) from our Central Name and Address Service (CNAS).

Why Do Campus Grids ?

- Improve utilization of (existing) resources don't purchase resources when they are not needed.
 - Cost savings.
- Provide common administrative framework and user experience.
 - Cost savings.
- Buy resources (clusters) in "bulk" @ lower costs.
 - Cost savings.
- Lower maintenance costs.
 - Cost savings.
- Unified user interface will reduce the amount of user training required to make effective use of the resources.
 - Cost savings.

What are the drawbacks ?

- Additional centralized infrastructure to provision and support.
 - Additional costs.
 - Can be provisioned incrementally to manage buy-in costs.
 - Virtual machines can be used to lower buy-in costs.
- Can make problem diagnosis somewhat more complicated.
 - Correlation of multiple logs across administrative boundaries.
 - A central log repository is one mechanism to manage this.
- Not appropriate for all workloads.
 - Don't want financials running on the same resources as research.
- Have to learn (and teach the user community) how to route jobs to the appropriate resources.
 - Trivially parallel jobs require different resources than MPI jobs.
 - I/O intensive jobs require different resources than compute intensive jobs.
- Limited stakeholder buy-in may lead to a campus grid that's less interoperable than you might like.

Outline

- Definition of a Campus Grid
- FermiGrid
 - Pre-Grid Situation
 - Today
 - Architecture
 - Services
 - Metrics
- Evolution & Other Considerations
- Conclusions

Definition

• A Campus Grid is a distributed collection of [compute and storage] resources, provisioned by one or more stakeholders, that can be seamlessly accessed through one or more [Grid] portals.

FermiGrid HA Services - 1

FermiGrid HA Services - 2

Xen Domain 0				
	LVS		Xen VM 0	
		Active	fg5x0	
	VOMS		Xen VM 1	
	VUIVIS	Active	fg5x1	
	GUMS	Active	Xen VM 2	
			18372	
	SAZ		Xen VM 3	
		Active	fg5x3	
	MySQL	Active	xen VIXI 4 fg5x4	
Active	Active fermigrid5			

Xen Domain 0				
	LVS Standby		Xen VM 0 fg6x0	
	VOMS	Active	Xen VM 1 fg6x1	
	GUMS	Active	Xen VM 2 fg6x2	
	SAZ	Active	Xen VM 3 fg6x3	
	MySQL	Active	Xen VM 4 fg6x4	
Active			fermigrid	6

FermiGrid Utilization

28-Oct-2010

FermiGrid – Occupancy by VO

CMS – Occupancy by VO

GP - Occupancy by VO

VOMS-PROXY-INIT calls

28-Oct-2010

GUMS calls

SAZ Calls

Squid Calls

