Conditions DB Scalable Access

Lee Lueking/ Igor Mandrichenko
November 17, 2010

@ Conditions DB Access 10/13/2010 /




Overview

e “Conditions Data” is an umbrella term referring to information
describing detector and beam conditions.

Examples

 calibration, alignment, attenuation, pedestal, etc. for detector
channels,

e information about the intensity and characteristics of the beam.

e Valid for specific periods of time, referred to as Intervals Of
Validity (IOV)

e Some of this information is required for processing and analysis
of detector data and thus access is required by many clients
running simultaneously on interactive and GRID resources.

e Much of this data is stored in central databases or files, and
approaches to scale the delivery to thousands of clients are
required.

Conditions DB Access 10/13/2010




Requirements

° Following are parameters that define the problem. Typical values
need to be obtained from experiments and/or estimated.

° Expected request rate
® Peak

® Average
® Data unit size
o Latency requirements
* Accepted failure rate
* Some estimate of time correlation between requests

° Boundary conditions like

® hardware to be used
® network bandwidth available

° technologies to use or not to use

@ Conditions DB Access 10/13/2010




MINERVA (typical)

Description Estimate Comment

Job Duration 1 hour

Number of simultaneous 100
Running Jobs

Events per job 1000

Internal job cache hitratio | 100% Most events processed by a
job use the same conditions
data set

Size of conditions data set |3 MB (uncompressed,
binary)

And now, some assumptions...
eNumber of requests processed simultaneously without significant loss of scalability: 5
ePeak job start rate = 10 times average job start rate
eAllowed latency = job duration/10 = 6 min

@ Conditions DB Access 10/13/2010




MINERVA with assumptions

Description Average Peak Comments

Job start rate 2/minute 20/minute N running jobs/job
duration

Conditions data 2/minute 20/minute assuming 100%

requests rate internal job cache hit
ratio = job start rate

Network bandwidth | 100KB/sec 1MB/sec

(3MB * 2/minute) (3MB * 20/minute)

Disk throughput 100KB/sec 1MB/sec

Time to retrieve and |30 sec 3 sec Single threaded DB

deliver 1 data set to server

sustain the request 150 sec 15 sec Five threaded DB

rate

sServer

@ Conditions DB Access

10/13/2010




ID Scheme and Version Control

® Need mechanism so conditions data can be managed as “sets”,
valid for a given time interval (A.K.A. I0V).

© Changes to the conditions set need a mechanism for “tagging”
them so reproducibility in processing can be insured.

® Requests from a client must refer to the set, IOV and tag, or
some similar unique identification scheme.

e What to avoid

® Clients request conditions data based on an event time, say the
time for the first event in a file.

® Cached data is not used effectively since the requests for the
same data all appear different.

@ Conditions DB Access 10/13/2010




Central vs. Distributed

* Central database service sized to meet peak demand, or
* Simple (especially since each experiment has unique solutions)
* Not always feasible or practical.

e [imited by server hardware and network constraints.

® Providing additional caching tiers between the database
server and the client.
® lightweight components can be deployed to unload the demand
on the central database service and provide additional reliability.

® This can be done close to where the clients are running and
significantly improve throughput while maintaining low central

server and network loads.

Conditions DB Access 10/13/2010




Caching Layer Options (1/2)

* Database replicas,

® Some database technologies provide replication software that

can make this fairly straightforward.
e A read-only replica is practical to set up and support

* Difficult to support beyond central site.

e Files delivered to the processing site

e Static data can be delivered w/ software, or some other

mechanism

* SQLite tiles maintain relational aspects of data and are

convenient to use.

Conditions DB Access 10/13/2010




Caching Layer Options (2/2)

® http proxy/caching servers (Typically SQUID)
* If the client requests are done properly, and the SQUID cache

can be used effectively, the performance achieved with modest

hardware can be extremely high.

e Redundancy is also casy to design into the system so high

reliability can also be achieved.

® Most OSG GRID facilities have SQUID services already in place

providing a standard infrastructure near the processing client.

* Requires central “translation” service.

@ Conditions DB Access 10/13/2010 /




Cache Coherency

® In a cached system, the cache can be stale and the refresh

policy must be understood.

e Several techniques have been developed to mitigate potential

issues in this area.

® These need to be clearly understood and appropriately

implemented for any type of caching system

@ Conditions DB Access 10/13/2010 /




Reliability

* Uptime must be very high

e Failover mechanisms must be transparent and “intelligent”

(client knows when to wait, or give up and return an error).

© Redundancy where possible makes the system more scalable

and avoids emergency (i.e. off hours) intervention.

@ Conditions DB Access 10/13/2010




Monitoring

* A way to monitor and record the requests that are being sent

by the clients is very useful

® This adds to the understanding of who made the request,
what kinds of requests are being made and where they are

coming from.

® In a distributed system, at the access logs at each level are
useful, although sometimes difficult to compile into a

comprehensive picture.

@ Conditions DB Access 10/13/2010




Short-term

For the most part, each experiment has chosen a different
approach to managing their conditions data information.

Solutions like replicated databases may make it possible to scale to
increasing numbers of clients under such an environment.

Some frameworks, specifically GAUDI/COOL//CORAL,
support multiple technologies including Oracle, SQLite, MySQL

(deprecated in recent versions) and FroNTier.

This provides some flexibility as to the choice of solution, but
nevertheless requires effort to set up infrastructure and
understand feature sets that are, sometimes, not well documented.

Other frameworks, like FMWK are more specific to particular
solutions, PostgresSQL in this case. i

Conditions DB Access 10/13/2010




Long-term

® In the lono term. providine common solutions would
g > P g

simplify deployment and support.

¢ Common API’s would make documentation and user buy—in

straightforward.
® |n some cases shared repositories may be possible

® Features such as monitoring could also be uniform and

shared.

@ Conditions DB Access 10/13/2010 /




Conclusions

An initial look at MINERVA access patterns give a rough idea of

44 . » .
typlcal performance requirements.

Having a consistent scheme for identifying conditions data sets and

IOVs, with proper version management, is essential.
Reliability is also an important requirement for such a service.

Several approaches for deploying a system to meet the

performance and reliability requirements are possible.

Short-term Working with existing systems to improve

performance may be possible.

Long-term, using common solutions for client API, middle tiers,

and monitoring is a target.

Conditions DB Access 10/13/2010




@ Conditions DB Access 10/13/2010 /




