
Lee Lueking/Igor Mandrichenko

November 17, 2010

Conditions DB Scalable Access

10/13/20101 Conditions DB Access

Overview
 “Conditions Data” is an umbrella term referring to information

describing detector and beam conditions.

 Examples
 calibration, alignment, attenuation, pedestal, etc. for detector

channels,

 information about the intensity and characteristics of the beam.

 Valid for specific periods of time, referred to as Intervals Of
Validity (IOV)

 Some of this information is required for processing and analysis
of detector data and thus access is required by many clients
running simultaneously on interactive and GRID resources.

 Much of this data is stored in central databases or files, and
approaches to scale the delivery to thousands of clients are
required.

10/13/20102 Conditions DB Access

Requirements
 Following are parameters that define the problem. Typical values

need to be obtained from experiments and/or estimated.

 Expected request rate
 Peak
 Average

 Data unit size

 Latency requirements

 Accepted failure rate

 Some estimate of time correlation between requests

 Boundary conditions like
 hardware to be used
 network bandwidth available

 technologies to use or not to use

10/13/20103 Conditions DB Access

MINERvA (typical)

10/13/2010Conditions DB Access4

Description Estimate Comment

Job Duration 1 hour

Number of simultaneous

Running Jobs

100

Events per job 1000

Internal job cache hit ratio 100% Most events processed by a

job use the same conditions

data set

Size of conditions data set 3 MB (uncompressed,

binary)

•Number of requests processed simultaneously without significant loss of scalability: 5
•Peak job start rate = 10 times average job start rate
•Allowed latency = job duration/10 = 6 min

And now, some assumptions…

MINERvA with assumptions

10/13/2010Conditions DB Access5

Description Average Peak Comments

Job start rate 2/minute 20/minute N running jobs/job

duration

Conditions data

requests rate

2/minute 20/minute assuming 100%

internal job cache hit

ratio = job start rate

Network bandwidth 100KB/sec

(3MB * 2/minute)

1MB/sec

(3MB * 20/minute)

Disk throughput 100KB/sec 1MB/sec

Time to retrieve and

deliver 1 data set to

sustain the request

rate

30 sec 3 sec Single threaded DB

server

150 sec 15 sec Five threaded DB

server

ID Scheme and Version Control

10/13/2010Conditions DB Access6

 Need mechanism so conditions data can be managed as “sets”,
valid for a given time interval (A.K.A. IOV).

 Changes to the conditions set need a mechanism for “tagging”
them so reproducibility in processing can be insured.

 Requests from a client must refer to the set, IOV and tag, or
some similar unique identification scheme.

 What to avoid

 Clients request conditions data based on an event time, say the
time for the first event in a file.

 Cached data is not used effectively since the requests for the
same data all appear different.

Central vs. Distributed

 Central database service sized to meet peak demand, or

 Simple (especially since each experiment has unique solutions)

 Not always feasible or practical.

 Limited by server hardware and network constraints.

 Providing additional caching tiers between the database

server and the client.

 lightweight components can be deployed to unload the demand

on the central database service and provide additional reliability.

 This can be done close to where the clients are running and

significantly improve throughput while maintaining low central

server and network loads.

10/13/20107 Conditions DB Access

Caching Layer Options (1/2)

10/13/2010Conditions DB Access8

 Database replicas,

 Some database technologies provide replication software that

can make this fairly straightforward.

 A read-only replica is practical to set up and support

 Difficult to support beyond central site.

 Files delivered to the processing site

 Static data can be delivered w/ software, or some other

mechanism

 SQLite files maintain relational aspects of data and are

convenient to use.

Caching Layer Options (2/2)

10/13/2010Conditions DB Access9

 http proxy/caching servers (Typically SQUID)

 If the client requests are done properly, and the SQUID cache

can be used effectively, the performance achieved with modest

hardware can be extremely high.

 Redundancy is also easy to design into the system so high

reliability can also be achieved.

 Most OSG GRID facilities have SQUID services already in place

providing a standard infrastructure near the processing client.

 Requires central “translation” service.

Cache Coherency

10/13/2010Conditions DB Access10

 In a cached system, the cache can be stale and the refresh

policy must be understood.

 Several techniques have been developed to mitigate potential

issues in this area.

 These need to be clearly understood and appropriately

implemented for any type of caching system

Reliability

10/13/2010Conditions DB Access11

 Uptime must be very high

 Failover mechanisms must be transparent and “intelligent”

(client knows when to wait, or give up and return an error).

 Redundancy where possible makes the system more scalable

and avoids emergency (i.e. off hours) intervention.

Monitoring

10/13/2010Conditions DB Access12

 A way to monitor and record the requests that are being sent

by the clients is very useful

 This adds to the understanding of who made the request,

what kinds of requests are being made and where they are

coming from.

 In a distributed system, at the access logs at each level are

useful, although sometimes difficult to compile into a

comprehensive picture.

Short-term

10/13/2010Conditions DB Access13

 For the most part, each experiment has chosen a different
approach to managing their conditions data information.

 Solutions like replicated databases may make it possible to scale to
increasing numbers of clients under such an environment.

 Some frameworks, specifically GAUDI/COOL//CORAL,
support multiple technologies including Oracle, SQLite, MySQL
(deprecated in recent versions) and FroNTier.

 This provides some flexibility as to the choice of solution, but
nevertheless requires effort to set up infrastructure and
understand feature sets that are, sometimes, not well documented.

 Other frameworks, like FMWK, are more specific to particular
solutions, PostgresSQL in this case. i

Long-term

10/13/2010Conditions DB Access14

 In the long term, providing common solutions would

simplify deployment and support.

 Common API’s would make documentation and user buy-in

straightforward.

 In some cases shared repositories may be possible

 Features such as monitoring could also be uniform and

shared.

Conclusions

10/13/2010Conditions DB Access15

 An initial look at MINERvA access patterns give a rough idea of

“typical” performance requirements.

 Having a consistent scheme for identifying conditions data sets and

IOVs, with proper version management, is essential.

 Reliability is also an important requirement for such a service.

 Several approaches for deploying a system to meet the

performance and reliability requirements are possible.

 Short-term working with existing systems to improve

performance may be possible.

 Long-term, using common solutions for client API, middle tiers,

and monitoring is a target.

finis

10/13/201016 Conditions DB Access

