
Lee Lueking/Igor Mandrichenko

November 17, 2010

Conditions DB Scalable Access

10/13/20101 Conditions DB Access

Overview
 “Conditions Data” is an umbrella term referring to information

describing detector and beam conditions.

 Examples
 calibration, alignment, attenuation, pedestal, etc. for detector

channels,

 information about the intensity and characteristics of the beam.

 Valid for specific periods of time, referred to as Intervals Of
Validity (IOV)

 Some of this information is required for processing and analysis
of detector data and thus access is required by many clients
running simultaneously on interactive and GRID resources.

 Much of this data is stored in central databases or files, and
approaches to scale the delivery to thousands of clients are
required.

10/13/20102 Conditions DB Access

Requirements
 Following are parameters that define the problem. Typical values

need to be obtained from experiments and/or estimated.

 Expected request rate
 Peak
 Average

 Data unit size

 Latency requirements

 Accepted failure rate

 Some estimate of time correlation between requests

 Boundary conditions like
 hardware to be used
 network bandwidth available

 technologies to use or not to use

10/13/20103 Conditions DB Access

MINERvA (typical)

10/13/2010Conditions DB Access4

Description Estimate Comment

Job Duration 1 hour

Number of simultaneous

Running Jobs

100

Events per job 1000

Internal job cache hit ratio 100% Most events processed by a

job use the same conditions

data set

Size of conditions data set 3 MB (uncompressed,

binary)

•Number of requests processed simultaneously without significant loss of scalability: 5
•Peak job start rate = 10 times average job start rate
•Allowed latency = job duration/10 = 6 min

And now, some assumptions…

MINERvA with assumptions

10/13/2010Conditions DB Access5

Description Average Peak Comments

Job start rate 2/minute 20/minute N running jobs/job

duration

Conditions data

requests rate

2/minute 20/minute assuming 100%

internal job cache hit

ratio = job start rate

Network bandwidth 100KB/sec

(3MB * 2/minute)

1MB/sec

(3MB * 20/minute)

Disk throughput 100KB/sec 1MB/sec

Time to retrieve and

deliver 1 data set to

sustain the request

rate

30 sec 3 sec Single threaded DB

server

150 sec 15 sec Five threaded DB

server

ID Scheme and Version Control

10/13/2010Conditions DB Access6

 Need mechanism so conditions data can be managed as “sets”,
valid for a given time interval (A.K.A. IOV).

 Changes to the conditions set need a mechanism for “tagging”
them so reproducibility in processing can be insured.

 Requests from a client must refer to the set, IOV and tag, or
some similar unique identification scheme.

 What to avoid

 Clients request conditions data based on an event time, say the
time for the first event in a file.

 Cached data is not used effectively since the requests for the
same data all appear different.

Central vs. Distributed

 Central database service sized to meet peak demand, or

 Simple (especially since each experiment has unique solutions)

 Not always feasible or practical.

 Limited by server hardware and network constraints.

 Providing additional caching tiers between the database

server and the client.

 lightweight components can be deployed to unload the demand

on the central database service and provide additional reliability.

 This can be done close to where the clients are running and

significantly improve throughput while maintaining low central

server and network loads.

10/13/20107 Conditions DB Access

Caching Layer Options (1/2)

10/13/2010Conditions DB Access8

 Database replicas,

 Some database technologies provide replication software that

can make this fairly straightforward.

 A read-only replica is practical to set up and support

 Difficult to support beyond central site.

 Files delivered to the processing site

 Static data can be delivered w/ software, or some other

mechanism

 SQLite files maintain relational aspects of data and are

convenient to use.

Caching Layer Options (2/2)

10/13/2010Conditions DB Access9

 http proxy/caching servers (Typically SQUID)

 If the client requests are done properly, and the SQUID cache

can be used effectively, the performance achieved with modest

hardware can be extremely high.

 Redundancy is also easy to design into the system so high

reliability can also be achieved.

 Most OSG GRID facilities have SQUID services already in place

providing a standard infrastructure near the processing client.

 Requires central “translation” service.

Cache Coherency

10/13/2010Conditions DB Access10

 In a cached system, the cache can be stale and the refresh

policy must be understood.

 Several techniques have been developed to mitigate potential

issues in this area.

 These need to be clearly understood and appropriately

implemented for any type of caching system

Reliability

10/13/2010Conditions DB Access11

 Uptime must be very high

 Failover mechanisms must be transparent and “intelligent”

(client knows when to wait, or give up and return an error).

 Redundancy where possible makes the system more scalable

and avoids emergency (i.e. off hours) intervention.

Monitoring

10/13/2010Conditions DB Access12

 A way to monitor and record the requests that are being sent

by the clients is very useful

 This adds to the understanding of who made the request,

what kinds of requests are being made and where they are

coming from.

 In a distributed system, at the access logs at each level are

useful, although sometimes difficult to compile into a

comprehensive picture.

Short-term

10/13/2010Conditions DB Access13

 For the most part, each experiment has chosen a different
approach to managing their conditions data information.

 Solutions like replicated databases may make it possible to scale to
increasing numbers of clients under such an environment.

 Some frameworks, specifically GAUDI/COOL//CORAL,
support multiple technologies including Oracle, SQLite, MySQL
(deprecated in recent versions) and FroNTier.

 This provides some flexibility as to the choice of solution, but
nevertheless requires effort to set up infrastructure and
understand feature sets that are, sometimes, not well documented.

 Other frameworks, like FMWK, are more specific to particular
solutions, PostgresSQL in this case. i

Long-term

10/13/2010Conditions DB Access14

 In the long term, providing common solutions would

simplify deployment and support.

 Common API’s would make documentation and user buy-in

straightforward.

 In some cases shared repositories may be possible

 Features such as monitoring could also be uniform and

shared.

Conclusions

10/13/2010Conditions DB Access15

 An initial look at MINERvA access patterns give a rough idea of

“typical” performance requirements.

 Having a consistent scheme for identifying conditions data sets and

IOVs, with proper version management, is essential.

 Reliability is also an important requirement for such a service.

 Several approaches for deploying a system to meet the

performance and reliability requirements are possible.

 Short-term working with existing systems to improve

performance may be possible.

 Long-term, using common solutions for client API, middle tiers,

and monitoring is a target.

finis

10/13/201016 Conditions DB Access

