
Requirements for Scalable Conditions Data Delivery

 Fermilab Computing Division/Running Experiments (CD/REX)

November 15, 2010

DRAFT

Introduction

Conditions data is an umbrella term that refers to information that describes detector and beam

conditions. It is generally valid for detector data taken during specific periods of time, sometimes

referred to as Intervals Of Validity (IOV). It is a type of meta-data necessary to make sense of

the detector data, and it includes calibration, alignment, attenuation, pedestal, etc. for detector

channels, as well as information about the intensity and characteristics of the beam.

Some of this information is required for processing and analysis of detector data and thus access

is required by many clients running simultaneously on interactive and GRID resources. Much of

this data is stored in central databases or files, and approaches to scale the delivery to thousands

of clients are needed.

Parameters

Following are parameters that define the problem. Typical values need to be obtained from

experiments and/or estimated.

1. Expected request rate: Peak and Average

2. Data unit size

3. Latency requirements

4. Accepted failure rate

5. Some estimate of time correlation between requests

6. Number of clients

7. Location of clients

Also important are boundary conditions such as hardware to be used, network bandwidth

available and which technologies to use and not to use.

MINERvA Example

Based on MINERvA jobs run over the last few months on the General Purpose GRID farm,

some basic understanding of the requirements for the conditions database service can be

examined. Table 1 includes these parameters.

Description Estimate Comment

Job Duration 1 hour

Number of simultaneous

Running Jobs

100

Events per job 1000

Internal job cache hit ratio 100% Most events processed by a

job use the same conditions

data set

Size of conditions data set 3 MB (uncompressed, binary)

Table 1. Conditions database access for MINERvA jobs.

With some additional assumptions, a clearer understanding of the scale of the delivery service

can be obtained.

 Number of requests processed simultaneously without significant loss of scalability: 5

 Peak job start rate = 10 times average job start rate

 Allowed latency = job duration/10 = 6 min

Table 2 shows possible values for average and peak database server activity.

Description Average Peak Comments

Job start rate 2/minute 20/minute N running jobs/job

duration

Conditions data

requests rate

2/minute 20/minute assuming 100%

internal job cache hit

ratio = job start rate

Network bandwidth 100KB/sec

(3MB * 2/minute)

1MB/sec

(3MB * 20/minute)

Disk throughput 100KB/sec 1MB/sec

Time to retrieve and

deliver 1 data set to

sustain the request

rate

30 sec 3 sec Single threaded DB

server

150 sec 15 sec Five threaded DB

server

Table 2. Average and peak database activities based on the assumptions in the text.

ID scheme and version control

There needs to be a mechanism by which the various kinds of conditions data can be managed as

“sets” valid for a given time interval (A.K.A. IOV). Changes to the conditions set need a

mechanism for “tagging” them so reproducibility in processing can be insured. Requests from a

client must refer to the set, IOV and tag, or some similarly unique identification scheme.

In the simplest cases, experiments will request conditions data based on an event time, say the

time for the first event in a file. For systems with intermediate caches, this will not work since

physics data files with different starting events may request the same cached date be stored

again.

Achieving Scalability and Reliability

Achieving the scalability and reliability to satisfy the requirements can be done by properly

sizing a central database service, or providing additional caching tiers between the database

server and the client. Having a single central service is the easiest as it preserves the original

interfaces used by each experiment. In some cases scrutinizing the way each experiment stores

and retrieves information to and from the database can also provide significant improvements in

performance. However, caching layers can enable scaling to meet the performance and reliability

needs of the experiment. Some approaches to adding these additional tiers include database

replicas, distributing the data as files, or using proxy/caching servers located on the network.

Although reliance on a single central database may be simple, it is not always feasible or

practical. In the environment of the Intensity Frontier there are many database technologies being

used. Each experiment has chosen the solution that works best within their development

environment and is supported by their framework software. Among the solutions being

employed are Oracle, MySQL, PostgresSQL, SQLite and file-based options such as ROOT or

ASCII formats. Simply scaling up the central service is limited by server hardware and network

constraints.

By including additional caching layers, or tiers, lightweight components can be deployed to

unload the demand on the central database service and provide additional reliability. This can be

done close to where the clients are running and significantly improve throughput while

maintaining low central server and network loads. These caching layers can be in the form of 1)

database replicas, 2) files delivered to the processing site, or 3) some form of proxy/caching

server deployed at or near processing centers.

Replicating some or all of the information in the central DB service can be an effective approach

to scaling the system. Some database technologies provide replication software that can make

this fairly straightforward. A read-only replica is practical to set up and support, and can in some

cases satisfies the requirements.

For conditions data that is more-or-less static, distributing files with the detector data being

processed is a satisfactory solution. If the conditions information is changing then delivering

files can be problematic and requires a method of indexing them to ensure that the proper info is

provided and used for specific processing. Exporting conditions data from the central database

to SQLite files can provide a convenient method to capture the relational nature of the data in a

transportable static file. Some of the frameworks used by experiments already support SQLite

and it is therefore an attractive solution.

For conditions data that is changing http proxy/caching servers represent a good solution. This is

typically done with SQUID and this has been shown to be reliable and versatile. If the client

requests are done properly, and the SQUID cache can be used effectively, the performance

achieved with modest hardware can be extremely high. Redundancy is also easy to design into

the system so reliability can also be achieved. Most OSG GRID facilities have SQUID services

already in place providing a standard infrastructure near the processing client.

In a cached system, the cache can be stale and the refresh policy must be understood. This issue

is referred to as “cache coherency”. Several techniques have been developed to mitigate potential

issues in this area. These need to be clearly understood and appropriately implemented for any

type of caching system.

Monitoring

A desirable is a mechanism that allows monitoring and recording the requests that are being sent

by the clients. This adds to the understanding of who, where, and what kinds of requests are

being made. Having a middle tier reduces the need for some of this monitoring since the chance

for bottlenecks is greatly reduced and any serious contention at the central service can be traced

by looking at the access logs.

Short-term strategy

For the most part, to date each experiment has chosen a different approach to managing their

conditions data information. Solutions like replicated databases may make it possible to scale to

increasing numbers of clients under such an environment. Some frameworks, specifically

GAUDI/COOL//CORAL, support multiple technologies including Oracle, SQLite, MySQL

(deprecated in recent versions) and FroNTier. This provides some flexibility as to the choice of

solution, but nevertheless requires effort to set up infrastructure and understand feature sets that

are, sometimes, not well documented. Other frameworks, like FMWK, are more specific to

particular solutions, PostgresSQL in this case. Other frameworks, like the CMS lite (A.K.A.

ART), will need to be understood as they appear.

Long-term strategy

In the long term, providing common solutions would simplify deployment and support.

Common API’s would make documentation and user buy-in straightforward. In some cases

shared repositories may be possible and features such as monitoring could also be uniform and

shared. As we move ahead working closely with the development teams for the experiments

and frameworks will enable us to include the up-front design needed to implement the best

solutions.

Conclusion

Understanding the requirements for conditions data storage and access are important to

providing proper solutions to the problem. From a preliminary analysis of typical access

patterns, a basic understand of the conditions data delivery performance needs can be

examined. Having a consistent scheme for identifying conditions data sets and IOVs, with

proper version management, is essential. Reliability is also an important requirement for such

a service. Several approaches for deploying a system to meet the performance and reliability

requirements are possible.

In the short-term, we will work closely with the experiments to understand their existing

systems and implement straightforward solutions to improve their DB access when possible. In

the long-term, we would like to move toward common solutions across experiments that will

be more easily monitored and maintained.

