
Data Handling Requirements for Intensity Frontier Experiments

CD/REX department

v1.0

19 October 2010

Introduction

Data handling means the problem of uniting the appropriate input data files with running batch jobs, 
and returning the output files to the correct storage area. The complexity of this task depends both on 
the amount of data produced by an experiment, and the geographic diversity of its operations; 
efficiently running high throughput jobs on widely dispersed grid computing elements requires a 
significantly more advanced infrastructure than running at a single site that is co-located with the entire  
dataset.

For the purposes of this document “data file” refers to the physics data produced by the detectors and 
any reconstruction and analysis applications. It does not include such things as executable programs, 
calibrations and other run dependent data, and the batch job log files, all of which are covered by other 
requirements documents. However, in some cases the methods used to transfer data files can also be 
used for these types of file

Basic requirements

The requirements for jobs which process data files can be split up into several basic stages:

1. Identify the input dataset. Generally the files which need processing share common 
characteristics which identify them. For example, for raw data this could be the run number 
or time it was taken.

2. Locate the files within the dataset. Each file will be available from one or more storage 
systems.

3. Bring the data to the job (or vice versa). The job and the data files it needs are brought 
together to perform the processing.

4. Return the output file to the appropriate place. For reconstruction jobs this may mean a 
permanent storage location, while for user analysis this may be a transient file that only 
needs to be retained until the user collects it.

Storage interfaces and transfer protocols

The jobs and data handling system will have to handle a variety of different storage systems. This is not 
intended as an overview of the different technologies available, but rather of the standard interfaces to 
them.



Worker node file access

Normally, individual jobs will be required to copy the input file from the storage element to scratch 
space on the worker node. Copying the data reads large consecutive blocks from the storage system, 
while reconstruction and analysis processes tend to read small chunks of the file, which puts more load 
on the storage. Interactive users and small numbers of batch jobs can access files directly, but large 
numbers of jobs slowly accessing the shared storage can reduce performance. Additionally, it is usually 
necessary to limit the number of simultaneous transfers. Some storage systems can do this themselves; 
those that don't may need an external solution.

Once the job has finished with the file, it should delete the local copy.

SRM (Storage Resource Management)

SRM is not a storage type itself, but a standardized grid storage access interface, which provides a 
common interface for multiple storage types, and largely allows clients to treat grid storage elements  
uniformly, regardless of the actual technology used to implement them. SRM allows clients to request 
file transfers in and out of the storage element, plus provides management commands to do things like 
creating directories and listing their contents. The SRM server does not perform the actual data transfer 
itself; instead it delegates this to a protocol such as GridFTP. As the standard grid interface, SRM is 
something jobs running on grid sites will have to use to perform file transfers.

GridFTP

GridFTP is the standard grid file transfer protocol, designed to improve the performance of transfers 
over high latency network connections. GridFTP does not provide any load balancing or throttling 
controls: these are more properly handled by the SRM layer.

POSIX filesystem interface

Some storage systems (e.g. NAS systems like BlueArc) can be mounted directly on worker nodes. 
Where such systems are known to be available it is possible to avoid some of the overheads of using 
the SRM interface, instead accessing the data directly through the file system. However, there is 
usually no load control available when doing this, so some extra method of limiting the number of 
simultaneous users may be required.

Multi-tier storage

Multi-tier storage means a storage system with multiple tiers which have different performance 
characteristics. Examples are things like tape backed disk caches or NAS systems with fast and slow 
disks (or in the long term future disks and flash storage) where the files can be migrated between the 
two types. Depending on the technology used, muti-tier storage may need special handling to make the 
most efficient use of it. Even if the storage system provides a uniform namespace for its contents, the 
performance of accessing different files within it may vary wildly. Especially where the latency of the 
slow storage is poor, prestaging the desired files into fast storage may be necessary to reduce idle jobs.

More detailed requirements

Identifying the input dataset

This stage normally requires some sort of metadata catalogue, which stores information about the 



contents of the data files, and a method of querying the catalogue to obtain a list of files matching 
whatever criteria the job needs. The metadata catalogue can also be used to store information on the 
lineage and processing history of the files.

Locating the data files

This requires a location catalogue, which stores the locations of all data files tracked by the 
experiment. Using the catalogue the physical location of any requested file can be obtained. To be 
useful, the catalogue needs to be kept reasonably up to date, so it must be integrated with any file 
transfer service.

Requesting files by name or by dataset

A simple model is for the jobs to request files by their name – the job obtains (either as part of the 
submission stage, or when it runs) the list of wanted files and locations, and then ask for those files in 
order by the provided location. This gives predictable and relatively simple behavior, but is not 
necessarily the most efficient way of doing things.

An alternative is for the job to request the entire dataset from the data handling system, and let that  
return the file locations in the order it chooses. This brings benefits if the system has extra knowledge 
about the which files are not immediately available. Then it can notify the job with the files that are  
immediately available, while requesting the unavailable ones.

A further benefit is the case where a dataset is too large to be processed by a single job. In the simple 
model it is the responsibility of the submitter to break the large dataset into smaller pieces. With the  
alternative, a set of multiple jobs can request files from the same dataset, and the service is responsible  
for assigning an unprocessed file from the dataset to a waiting job as needed. Especially if there is 
significant variation between processing times of different files then this can provide an efficient 
assignment of work to the individual jobs. 

For some experiments it may be necessary to process linked files at the same time (for example, near 
and far detector). This can be easily handled by the simple approach, but is more complicated where the 
data handling system determines the processing order.

Bringing the data file and job together

Where jobs are being run on dispersed grid execution sites there are two main approaches to the 
problem of getting the job and data together (alternatively, the jobs can fetch the files to the worker  
nodes direct from a central location, skipping any local site storage, but this is likely to prove 
inefficient for more than minimal data volumes). One is to bring the job to the data, the other is to bring 
the data to the job. The former requires more administrative control and requires the experiment to  
create carefully defined datasets, the latter provides more flexibility, but may be less efficient.

With the job to data approach, a limited number of people are responsible for determining which 
dataset should be located on which storage element, and on how to manage the space assigned to their 
VO. For more than the smallest volumes of data, an automated file transfer service is required to 
transfer the files around, and delete those that are no longer needed, but this is something that is only 
required intermittently. The job submission process needs to be integrated with the data handling 
system in order to direct the jobs to execution sites which contain the required dataset for the job.

For the data to job method, a file transfer service copies the files to the local storage element on 
demand, and notifies the job when the file is available. If old files are removed on a least recently used 



basis, this will keep popular files available by erasing unused ones to free up space. No administrative 
control is required, but if the available space is less than needed by the datasets than are commonly 
used, it can lead to an inefficient cycling of files in and out of the storage element. This method does 
not require integration with the job submission process, but this may still be beneficial as it is  
preferable to send jobs to locations where much or all of their required datasets are already available.

Pre-staging files

Where files are being copied to a storage element, or where they are located on a multi-tier storage 
system, the efficiency of the jobs can be improved by pre-staging the files before running the jobs. This 
can be done manually by the job submitter as a separate step, or automatically by delaying the 
submission or execution of the jobs until some or all of the files are available in immediately available  
storage. The latter requires intergration with the job submission system.

Ad-hoc file transfers

It may be necessary to transfer files that may not included in the main metadata and file location  
catalogues. Such files can include things like the intermediate stages of the reconstruction program, and 
job output files. The file transfer mechanism should be able to move such files around.

Returning job output

Grid jobs run using shared accounts. When job output files are returned to the submitter they may be in 
a shared temporary area owned by a group account. There need to be tools to move the files to their 
final location and ensure they have the correct ownership.

Client interfaces

To enable maximum integration with job submissions, batch scripts, and experiment frameworks, the 
client side interface to the data handling system should be callable from, at least, shell scripts, Python,  
and C++.

Monitoring

Each job should provide notifications of its data handling activities to the monitoring system – 
requesting next file, starting to transfer file to worker node, finished transferring file, etc. This helps 
with pinpointing problems where jobs get stuck waiting for files.


	Data Handling Requirements for Intensity Frontier Experiments
	Introduction
	Basic requirements
	Storage interfaces and transfer protocols
	Worker node file access
	SRM (Storage Resource Management)
	GridFTP
	POSIX filesystem interface
	Multi-tier storage

	More detailed requirements
	Identifying the input dataset
	Locating the data files
	Requesting files by name or by dataset
	Bringing the data file and job together
	Pre-staging files
	Ad-hoc file transfers
	Returning job output
	Client interfaces

	Monitoring


