Muon Experiments in Project X

Yoshitaka Kuno Department of Physics Osaka University

DOE Briefing November 17th, 2010

Outline

- Why Intensity Frontier with Muons?
- Project X Muon Source: Comparison in the World
- Muon Experiments at Project X
- Why Charged Lepton Flavor Violation (CLFV) ?
- Why μ -e Conversion, not $\mu \rightarrow e\gamma$?
- Why 10⁻¹⁸ for µ-e Conversion ?
- Planned µ-e Conversion Experiment at Fermilab (Mu2e)
- µ-e Conversion Experiment at Project X
- Summary

Why Intensity Frontier with Muons ?

Electroweak Epoch

Origin of Mass (Higgs Particle)

New Symmetry (Supersymmetry)

Unification Epoch

Unification of Fundamental Forces (GUT)

> Origin of Neutrino mass (Right-handed Neutrinos)

Our Existence in the Universe (Leptogenesis)

Quantum Gravity Epoch

Superstrings

Electroweak Epoch

Origin of Mass (Higgs Particle)

New Symmetry (Supersymmetry)

Unification Epoch

Unification of Fundamental Forces (GUT)

> Origin of Neutrino mass (Right-handed Neutrinos)

Our Existence in the Universe (Leptogenesis)

Quantum Gravity Epoch

Superstrings

The Intensity Frontier is.....

 Energy scale reached by the intensity frontier would be much higher than that of accelerators of O(1 TeV) through quantum radiative corrections (renormalization group equation = RGE).

Quantum Corrections

- Effects are small.
 - Rare process searches
 - High precision measurements
- High intensity machine is needed.
- Indirect searches

Why Muons for the Intensity Frontier?

Guidelines for Rare Process Searches

(1) Many particles are needed

The muon is the lightest unstable particle and therefore given energy, more muons can be produced.

(2) Theoretical uncertainty should be small.

The muon does not have strong interaction, and therefore the processes with muons are theoretically clean.

Project X Muon Source: Comparison

Comparison : Muon Beam Sources

	beam power	time structure	muon yield	
PSI	PSI 1.2 MW		10 ⁸ /sec	
TRIUMF	75 kW	DC	10 ⁵ /sec	
MuSIC	400 W	DC	10 ⁷⁻⁸ /sec	
RAL	200 kW	pulsed (50 Hz)	2x10 ⁵ /sec	
J-PARC (MLF)	1 MW	pulsed (25 Hz)	2x10 ⁷ /sec	
Project X Muon	1-2 MW	DC & pulsed	10 ⁸⁻¹² /sec	

Comparison : Muon Beam Sources

	beam power	time structure	muon yield
PSI	1.2 MW	DC	10 ⁸ /sec
TRIUMF	75 kW	DC	10 ⁵ /sec
MuSIC	400 W	DC	10 ⁷⁻⁸ /sec
RAL	200 kW	pulsed (50 Hz)	2x10 ⁵ /sec
J-PARC (MLF)	1 MW	pulsed (25 Hz)	2x10 ⁷ /sec
Project X Muon	1-2 MW	DC & pulsed	10 ⁸⁻¹² /sec
		adiustable	

Comparison : Muon Beam Sources

Muon Experiments at Project X

Mode	Beam	Current limit	planned goal	Project X goal	Priority
µ⁻N→e⁻N	pulsed	<10 ⁻¹²	3x10 ⁻¹⁷	3x10 ⁻¹⁹	
µ+→e+γ	DC	<1.1x10 ⁻¹²	2x10 ⁻¹³	2x10 ⁻¹⁴	
µ [*] →e+e+e-	DC	<10 ⁻¹²	_	1x10 ⁻¹⁶	
µ⁻e⁻N→e⁻e⁻N	DC	_		1x10 ⁻¹⁶	
Mu to Mu conv	pulsed	<8x10 ⁻¹¹		<5x10 ⁻¹⁵	
muon EDM	pulsed	<1.8x10 ⁻¹⁹		<5x10 ⁻²⁵	
muon lifetime	pulsed	1ppm		0.1ppm	

Mode	Beam	Current limit	planned goal	Project X goal	Priority
µ⁻N→e⁻N	pulsed	<10 ⁻¹²	3x10 ⁻¹⁷	3x10 ⁻¹⁹	
µ+→e+γ	DC	<1.1x10 ⁻¹²	2x10 ⁻¹³	2x10 ⁻¹⁴	\bigstar
µ*→e+e+e-	DC	<10 ⁻¹²	_	1x10 ⁻¹⁶	
µ⁻e⁻N→e⁻e⁻N	DC	_		1x10 ⁻¹⁶	
Mu to Mu conv	pulsed	<8x10 ⁻¹¹		<5x10 ⁻¹⁵	
muon EDM	pulsed	<1.8x10 ⁻¹⁹		<5x10 ⁻²⁵	
muon lifetime	pulsed	1ppm		0.1ppm	\bigstar

Mode	Beam	Current limit	planned goal	Project X goal	Priority
µ⁻N→e⁻N	pulsed	<10 ⁻¹²	3x10 ⁻¹⁷	3x10 ⁻¹⁹	
µ+→e+γ	DC	<1.1x10 ⁻¹²	2x10 ⁻¹³	erimen	
µ*→e+e+e-	DC	<10 ⁻¹²	ship ext	1x10 ⁻¹⁶	
µ⁻e⁻N→e⁻e⁻N	DC	s a flag		1x10 ⁻¹⁶	
Mu to Mu	ersion	<8x10 ⁻¹¹		<5x10 ⁻¹⁵	
V-6 COLLA	pulsed	<1.8x10 ⁻¹⁹		<5x10 ⁻²⁵	
muon lifetime	pulsed	1ppm		0.1ppm	

Why CLFV ?

What is Charged Lepton Flavor Violation ?

Quarks

Quark mixing observed

What is Charged Lepton Flavor Violation ?

Quarks

Quark mixing observed

Neutrino mixing observed

What is Charged Lepton Flavor Violation ?

Quarks

Quark mixing observed

Nobel Prize-wining

class research

Charged Lepton Flavor Violation (CLFV)

19

cLFV in the SM with massive neutrinos

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{m_{\nu_l}^2}{M_W^2} \right|^2$$

Observation of CLFV would indicate a clear signal of physics beyond the SM with massive neutrinos.

Comparison of Sensitivity to New Physics Models (a la Prof. Dr. A. Buras at TUM)

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Different theoretical models

> W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi, D.M. Straub, . Nucl.Phys.B830:17-94 ,2010.

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

Comparison of Sensitivity to New Physics Models (a la Prof. Dr. A. Buras)

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau ightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(q-2)_{\mu}$	***	***	**	***	***	*	?

All three stars for µ-e conversion

4

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi, D.M. Straub, . Nucl.Phys.B830:17-94 ,2010.

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

CLFV in SUSY Models

an example diagram $$\begin{split} & \tilde{W} & \tilde{V}_{R} \\ & \mu \\ & \tilde{\nu}_{\mu} \\ & \tilde{\nu}_{e} \\ \end{split}$$ Slepton Mixing $$\begin{split} & \tilde{\nu}_{R} \\ & \tilde{\nu}_{\mu} \\ & \tilde{\nu}_{e} \\ & \tilde{\mu} \\ &$$

Through quantum corrections (RGE), slepton mixing is sensitive to physics at very high energy scale (such as GUT and neutrino seesaw models).
In contrast to proton decay (~1M tons) and double beta decays (~0.1-1 ton), CLFV need only 10¹⁹⁻²¹ muons.

CLFV in SUSY Models

By using SUSY, CLFV can provide hints of physics at very high energy scale that accelerator cannot directly reach.
SUSY plays a role of a bridge between physics at high (10¹⁶ GeV) and low energy (102 GeV) scales.

Why μ -e Conversion, not $\mu \rightarrow e\gamma$?

Physics Sensitivity Comparison between $\mu \rightarrow e\gamma$ and $\mu - e$ Conversion

Photonic (dipole) and non-photonic contributions

	photonic (dipole)	non- photonic
μ→eγ	yes (on-shell)	no
µ-e conversion	yes (off-shell)	yes

more sensitive to new physics

Experimental Comparison between $\mu \rightarrow e\gamma$ and μ -e Conversion

	background	challenge	beam intensity	
• μ→eγ	accidentals	detector resolution	limited	
 µ-e conversion 	beam	beam background	no limitation	

• μ→eγ :

- Accidental background is given by (rate)².
- The detector resolutions have to be improved, but difficult.
- The ultimate sensitivity would be about 10⁻¹⁴.

• µ-e conversion :

- A higher beam intensity can be taken because of no accidentals.
- Improvement of a muon beam can be possible.
 - high intensity and high purity

µ-e conversion might be a next step.

Why $< 10^{-18}$ Sensitivity for μ -e conversion ?

µ-e Conversion : Target dependence

If signal is seen at 10⁻¹⁶,

R. Kitano, M. Koike and Y. Okada, Phys. Rev. D66, 096002 (2002)

By changing muon-stopping target materials, effective interaction of new physics can be discriminated.

Aiming at Single Event Sensitivity of 2x10⁻¹⁹

If signal is not seen at 10⁻¹⁶,

BR~10⁻¹⁹ covers the whole SUSY-parameter space for LHC. When SUSY is found at LHC, CLFV should be observed.

$$B(\mu^- + Al \to e^- + Al) < 10^{-16}$$

Sensitivity of <10⁻¹⁸

Sensitivity of <10⁻¹⁸

$$B(\mu^{-} + Al \to e^{-} + Al) < 10^{-16}$$
$$B(\mu^{-} + Ti \to e^{-} + Ti) < 10^{-18}$$

Planned µ-e conversion Experiment (Mu2e)

Mu2e at Fermilab (for single event sensitivity of 3x10⁻¹⁷)

Muon Intensity for Mu2e

To achieve a single sensitivity of 10⁻¹⁷, we need

10¹¹ muons/sec (with 10⁷ sec running)

whereas the current highest intensity is 10⁸/sec at PSI.

Pion Capture by Superconducting Solenoid System

only 20 kW beam power needed

Background Rejection Methods for Mu2e

Beam-related Beam pulsing with backgrounds separation of 1µsec

measured between beam pulses

proton extinction = #protons between pulses/#protons in a pulse < 10⁻⁹

Muon DIO background low-mass trackers in vacuum & thin target

improve electron energy resolution

Muon DIF background

curved solenoids for momentum selection eliminate energetic muons (>75 MeV/c)

µ-e Conversion Experiment at Project X

Muon Intensity for Sensitivity $< 3x10^{-19}$ at Project X

To achieve a single sensitivity of 10⁻¹⁹, we need

 $>10^{12}$ muons/sec (with 10⁷ sec running)

whereas the current highest intensity is 10⁸/sec at PSI.

Pion Capture by Superconducting Solenoid System

Muon Intensity for Sensitivity $< 3x10^{-19}$ at Project X

To achieve a single sensitivity of 10⁻¹⁹, we need

 $>10^{12}$ muons/sec (with 10⁷ sec running)

whereas the current highest intensity is 10⁸/sec at PSI.

Pion Capture by Superconducting Solenoid System

Multi MW beam power at Project X needed

Additional Background Rejection Methods for Sensitivity < 3x10⁻¹⁹ at Project X

Phase Rotation Option: PRISM/Project X

Muon Beam Cooling Option: Geant4 Simulation of Ionization Cooling

Sensitivity and Background (preliminary) at Project X Sensitivity and Backgrounds

Sensitivity

e 1. Expected improvement factors for the signal acceptance

- muon beam intensity = 2×10^{12} /sec
- detector acceptance = 0.2
- single event sensitivity = 2×10^{-19}
- 90% C.L. upper limit = 5×10^{-19}

Background estimation

Item	rate	Comments
Muon decay in orbit	0.05	350 keV (FWHM) resolution
Radiative muon capture	0.01	
Pion related backgrounds	~0	No pions
Muon decay in flight	~0	Momentum cut at extraction
Cosmic rays	0.002	
Total	0.06	

Mode	Beam	Current limit	planned goal	Project X goal	Priority
µ⁻N→e⁻N	pulsed	<10 ⁻¹²	3x10 ⁻¹⁷	3x10 ⁻¹⁹	
µ+→e+γ	DC	<1.1x10 ⁻¹²	2x10 ⁻¹³	2x10 ⁻¹⁴	
µ [*] →e+e+e-	DC	<10 ⁻¹²	_	1x10 ⁻¹⁶	
µ⁻e⁻N→e⁻e⁻N	DC	_		1x10 ⁻¹⁶	
Mu to Mu conv	pulsed	<8x10 ⁻¹¹		<5x10 ⁻¹⁵	
muon EDM	pulsed	<1.8x10 ⁻¹⁹		<5x10 ⁻²⁵	
muon lifetime	pulsed	1ppm		0.1ppm	

Mode	Beam	Current limit	planned goal	Project X goal	Priority
µ⁻N→e⁻N	pulsed	<10 ⁻¹²	3x10 ⁻¹⁷	3x10 ⁻¹⁹	iect X
µ+→e+γ	DC	<1.1x10 ⁻¹²	2x10 ⁻¹³	atpr	
µ [*] →e+e+e-	DC	<10 ⁻¹²	odram	1×10 ⁻¹⁶	
µ⁻e⁻N→e⁻e⁻N	DC	sics pr		1x10 ⁻¹⁶	
Mu to Mu	n phy	<8x10 ⁻¹¹		<5x10 ⁻¹⁵	
aichmu	pulsed	<1.8x10 ⁻¹⁹		<5x10 ⁻²⁵	
muon lifetime	pulsed	1ppm		0.1ppm	

Summary

- Physics motivation of CLFV processes would be significant and robust at the LHC era. The CLFV would have sensitivity to study physics at high energy scale, in particular with SUSY,
- Among various muon programs at Project X, μ-e conversion would be a flagship experiment. The aimed single event sensitivity is 2x10⁻¹⁹.
- µ-e conversion experiment needs a pulsed muon beam of 1-2 MW. Project X would provide such a beam, but PSI cannot.
- Muon fundamental physics programs at Project X is rich and would have high discovery potentials.

Backup Slides

Various Models Predict Charged Lepton Mixing.

CLFV Predictions by Extra Dimension Models

CLFV Predictions by Little Higgs Model (with T parity)

SUSY Leptogenesis with CLFV (1)

Assumptions:

- No cancellations
- hierarchical neutrino Yukawa eigenvalues: $y_1 \ll y_2 \ll y_3$

(Leptogenesis requires $\Lambda > 10^{16}$ GeV, so no need to assume a large cut-off)

SUSY Leptogenesis with CLFV (2)

μ -e conversion at 10⁻¹⁸??

$$\mathrm{R}(\mu\mathrm{Ti} \to e\mathrm{Ti}) \gtrsim 10^{-18} \left(\frac{M_1}{2 \times 10^{10} \mathrm{~GeV}}\right)^2 \left(\frac{m_S}{200 \mathrm{~GeV}}\right)^{-4} \left(\frac{\tan\beta}{10 \mathrm{~GeV}}\right)^2$$

Expectations from leptogenesis, (for $m_S=200$ GeV, $tan\beta=10$)

Natural region for \widetilde{m}_1 : No flavour effects: $R \ge 10^{-18}$ "typical" flavour effects: $R \ge 2 \times 10^{-19}$ "extreme" flavour effects: $R \ge 2 \times 10^{-20}$

Note that in deriving this result we have assumed the worst case scenario for the detection of μ – e flavour violation:

- R-parity conserved.
- Universal soft terms at the cut-off scale.
- Yukawa textures that minimize the flavour violation: $(Y_{\nu}^{\dagger}Y_{\nu})$ diagonal.
- Also, it is unlikely that M₁ saturates the lower bound (this requires optimal CP phases).

 \rightarrow in general, much larger rates expected

SUSY Predictions for cLFV

Theoretical predictions are just below the present experimental bound.

Minimal SUSY Scenario

slepton mass matrix

$$m_{\tilde{l}}^{2} = \begin{pmatrix} m_{11}^{2} m_{12}^{2} m_{13}^{2} \\ m_{21}^{2} m_{22}^{2} m_{23}^{2} \\ m_{31}^{2} m_{32}^{2} m_{33}^{2} \end{pmatrix}$$

 $\Delta m_{ij}^2 = 0$ @ Planck energy scale
New physics at high energy scale would introduce off-diagonal mass matrix elements, resulting in slepton mixing.
neutrino seesaw mechanism (~10¹⁵GeV)
grand unification (GUT) (~10¹⁶GeV)

 $\Delta m_{ij}^2 \neq 0$

@ Weak energy scale (100 GeV)

cLFV have potential to study physics at very high energy scale like 10¹⁶ GeV.

cLFV History

First cLFV search

Бруно Понтекоры

Pontecorvo in 1947

Muon Decay In Orbit (DIO) in a Muonic Atom

- Normal muon decay has an endpoint of 52.8 MeV, whereas the end point of muon decay in orbit comes to the signal region.
- good resolution of electron energy (momentum) is needed.

 150 keV energy resolution of electron detection is sufficient for <10⁻¹⁸ sensitivity.

COMET at J-PARC (for single event sensitivity of 3x10⁻¹⁷)

