Preliminary studies of the production of a single Z<sup>0</sup> in a fusion process  $\mu^+\mu^- \rightarrow \nu_{\mu}\overline{\nu}_{\mu}Z^0$ using ILCroot Background studies Vito Di Benedetto

INFN Lecce and Università del Salento

#### Muon Collider Physics and Detector Meeting December 15, 2010 Fermilab

## Outline

- Detector baseline
- MARS event
- Background studies
- Merging issues
- Conclusions

### Detector baseline



### Detector baseline zoom



## **Detector** baseline

### **ADRIANO** Calorimeter

- Lead glass + scintillating fibers
- ~1.4° tower aperture angle
- 180 cm depth
- ~ 7.5  $\lambda_{int}$  depth
- >100  $X_0$  depth
- Fully projective geometry
- Azimuth coverage down to ~8.4° (Nose)
- Barrel: 16384 towers
- Endcaps: 5544 towers





### **Detector** baseline



- WLS's collect Cerenkov photons generated in lead glass (front and back readout)
- Scint fibers generate and collect scintillating photons (front and back readout for fibers in the core of the tower; only back readout for the other fibers)
- Simulation include:
  - SiPM with ENF=1.016
  - Fiber non-uniformiti response = 0.8% (scaled from CHORUS)
  - Threshold = 3 p.e. (SiPM dark current< 50 kHz)</li>
  - ADC with 14 bits
  - Gaussian noise with  $\sigma = 1$  p.e.

# Simulating MARS event

- Simulated 1 MARS event
  - Origin of the particles: cone
  - Background particles files for  $\mu^{\scriptscriptstyle +}$  and  $\mu^{\scriptscriptstyle -}$  within 25 m and beyond 25 m
  - Particle in a MARS event ~1x10<sup>8</sup>, almost all originated within 25 m
  - Particles from file within 25 m have weight ~ 20
    - These particles are split using azimuthal symmetry
  - Particles from file beyond 25 m have weight << 1</li>
    - Pick up randomly these particle, taking care the integral weight is the same
    - This have been done 10 times, then the average signal have been used

# Simulating MARS event

• Time and disk space needed to simulate 1 MARS event using full geometry and full simulation

- Weighted particles:
  - 1 CPU <-> 200 h
  - 150 Gb disk space
- Unweighted particles;
  - 1 CPU <-> 2000 h
  - 1 Tb disk space
- Disk space and CPU time can be reduced using simplified geometry and fast simulation

### MARS event overview

# Timing and space distributions of one background event into the calorimeter

### **Timing of the Physics signal and background event**



# background vs theta for different calorimeter integration time



# **Development of the background event into the calorimeter**



### MARS event overview

Energy distribution of the background per tower for different species using different time gate

#### Energy distribution per tower. MARS input file within 25 m; Integration time gate [0 – 300] ns



#### Energy distribution per tower. MARS input file within 25 m; Integration time gate [5 – 105] ns



#### Energy distribution per tower. MARS input file within 25 m; Integration time gate [5 – 25] ns



#### Energy distribution per tower. MARS input file within 250 m; Integration time gate [0 – 300] ns



V. Di Benedetto

#### Energy distribution per tower. MARS input file within 250 m; Integration time gate [5 – 105] ns





1 entry = energy of 1 tower

Most of the energy is in the endcaps originated by some muons hotspot

No difference using shorter integration time gate

#### Energy distribution per tower. MARS input file within 250 m; Integration time gate [5 – 25] ns





1 entry = energy of 1 tower

Most of the energy is in the endcaps originated by some muons hotspot

No difference using shorter integration time gate

### MARS event overview

# Energy distribution of the background per tower vs theta for different species using different time gate

# Energy distribution per tower vs theta. MARS input file within 250 m; Integration time gate [0 – 300] ns



V. Di Benedetto



#### V. Di Benedetto



# Energy distribution per tower vs theta. MARS input file within 25 m; Integration time gate [0 – 300] ns



# Energy distribution per tower vs theta. MARS input file within 25 m; Integration time gate [5 – 105] ns



# Energy distribution per tower vs theta. MARS input file within 25 m; Integration time gate [5 – 25] ns



### MARS event overview

Energy distribution of the background per tower in barrel section for different species using different time gate

# Energy distribution per tower in barrel. MARS input file within 250 m; Integration time gate [0 – 300] ns



V. Di Benedetto

# Energy distribution per tower in barrel. MARS input file within 25 m; Integration time gate [0 – 300] ns



V. Di Benedetto

# Energy distribution per tower in barrel. MARS input file within 25 m; Integration time gate [5 – 105] ns



# Energy distribution per tower in barrel. MARS input file within 25 m; Integration time gate [5 – 25] ns



### MARS event overview

Summary: total energy distribution of the background per tower In barrel section [45° - 135°] and endcap sections [20° - 45°] And [8° - 20°] using different integrated time gate

### Energy distribution per tower in barrel [45°-135°]. Full MARS event



# Energy distribution per tower in endcap [20°-45°] and [135°- 160°]. Full MARS event



# Energy distribution per tower in endcap [8°-20°] and [160°-172°]. Full MARS event



### MARS event overview

# Point of origin of the background particles entering the calorimeter using different integration time gate

#### Origin of gammas that enter into the calorimeter. MARS input file with background within 25 m. Each entries is the integrated energy in an area 10x10 cm<sup>2</sup> If a particle reach the calorimeter from the nose, it don't make shower into the tracker



### Origin of neutrons that enter into the calorimeter. MARS file within 25 m.

Each entries is the integrated energy in an area 10x10 cm<sup>2</sup> If a particle reach the calorimeter from the nose, it don't make shower into the tracker



### Origin of electrons that enter into the calorimeter. MARS file within 25 m.

Each entries is the integrated energy in an area 10x10 cm<sup>2</sup> If a particle reach the calorimeter from the nose, it don't make shower into the tracker



#### Origin of muons that enter into the calorimeter. MARS file within 25 m.

Each entries is the integrated energy in an area 10x10 cm<sup>2</sup> If a particle reach the calorimeter from the nose, it don't make shower into the tracker



ν. υι βεμεαεττο

### Origin of others that enter into the calorimeter. MARS file within 25 m.

Each entries is the integrated energy in an area 10x10 cm<sup>2</sup> If a particle reach the calorimeter from the nose, it don't make shower into the tracker



### Origin of muons that enter into the calorimeter. MARS file within 250 m.

Each entries is the integrated energy in an area 10x10 cm<sup>2</sup> If a particle reach the calorimeter from the nose, it don't make shower into the tracker



# Physics processes vs background

# First attempt to get MuonCollider background and Physics together





V. Di Benedetto

### Reconstructed jets energy spectrum



Jet's energy spectrum of reconstructed jets (bin = 5GeV) Pick between 100 – 200 GeV

### Physics and background: some comment

- Jets develop in 16 25 towers; mean energy 150 GeV
- Background in barrel:mean energy 5 GeV RMS 0.6 GeV Jet energy fluctuation after background pedestal cut 2.5 – 3 GeV
- Background in endcap > 20°: mean energy 5 GeV RMS 1. GeV Jet energy fluctuation after background pedestal cut 5 – 6 GeV
- Background in endcap < 20°: mean energy 12 GeV RMS 5. GeV Jet energy fluctuation after background pedestal cut 20 – 25 GeV

### Merging issues to be addressed

- Merging is done from SDigits to Digits (inherited by AliRoot)
- For Alice this work fine. In high multiplicity event PbPb ions they have ~2x10<sup>4</sup> particles per event
- In a MuonCollider MARS background event there are ~1x10<sup>8</sup> particles per event
- To be able to simulate a full MuonCollider background event I split it in ~2x10<sup>3</sup> subsections
- Using the classic merge technic is time expensive
- Different approach can be used: FastClusterization; it is less accurate but can be more efficient. Need some time to implement this merging technic



- Accurate study about MuonCollider background have been presented
- Below 20° is complicate do Physics
- Some time it is need to implement a more efficient merging of background and Physics

# Back-up slides

#### Energy distribution per tower in barrel. MARS file within 250 m; Time gate [5 – 105] ns



V. Di Benedetto

### Energy distribution per tower in barrel. MARS file within 250 m; Time gate [5 – 25] ns



V. Di Benedetto