HQ01d quench performance

M. Marchevsky, LBNL

HQ01d magnet configuration

Test timeline

HQ01d	Ramp- rate quenches		Training	Magnetic Measurements (ramps and holding)	Ramp- rate quenches	PH studies	
	A01-04	A5	A6-A30		A32,A33		A34-38

Training plot

Training plot (Iss\%)

Quench propagation example (A15)

Quench analyzer software

Pole, return end quench (A05)
$1^{\text {st }}$ training quench ($50 \mathrm{~A} / \mathrm{s}$ to 7 kA , then $20 \mathrm{~A} / \mathrm{s}$)

Magnet: HQ01d- Test A05

Initial quench at the pole turn 5B68, propagating into 5B89 and 5B45 multi-turn

Pole, return end quench (A07)

$$
\begin{array}{ll}
\mathrm{I}=13572 \mathrm{~A} & \text { MIITS }=12.21 \\
\mathrm{~V}_{\mathrm{I}}=154 \mathrm{~mm} /(7.4+8.9) \mathrm{ms}=9.4 \mathrm{~m} / \mathrm{s}
\end{array}
$$

B1-B2 $=150$
$B 2-B 3=2000$ B3-B4 $=19300$ B4-B5=21997 B5-B6=311 B6-B7 $=292$ B7-B8 $=154$ $\mathrm{B} 8-\mathrm{B} 9=292$ B9-B10=311

Magnet: HQ01d- Test A07
5 l

Pole, straight section quench (A17)

$50 \mathrm{~A} / \mathrm{s}$ to 7 kA , then $20 \mathrm{~A} / \mathrm{s}$

Magnet: HQ01d- Test A17

Pole-straight section quench (A10)

HQ01d pole quenches summary

A\#	Coil	Layer	Section	Segment	Exact location
5	5	B	RE	78	80 mm from B 8
7	8	B	RE	78	70 mm from B7
9	8	A	RE	78	30 mm from A 7
10	8	A	Straight	910	50 mm from A10
11	5	A	?	54	First outer turn of the MT
12	8	A	Straight	910	N/D
13	8	$A B$	Ramp	1010	51 mm from A10
14	8	A	Straight	78	21 mm from A 7
15	9	B	RE	78	58 mm from B8
16	8	A	Straight	78	23 mm from A 7
17	8	A	Straight	78	25 mm from A 7
18	9	A	Straight	67	38 mm from A 6
19	8	A	Straight	78	19 mm from A 7
20	8	A	Straight	910	20 mm from A10
21	8	A	Straight	Vt 7	At A7
24	8	A	Straight	Vt 7	At A7
26	8	AB	Ramp (LE)	1010	28 mm from B10
29	8	A	Straight	910	24 mm from A10
34	8	$A B$	Ramp (LE)	1010	38 mm from B10
36	8	A	Straight	Vt 7	At A7
38	9	A	Straight	65	34 mm from A6

Mid-plane quench (A27)

Magnet: HQ01d- Test A27

HQ01d mid-plane quenches summary

A\#	First Coil	
8	7	8
22	7	8
23	7	8
25	7	8
27	7	8
28	8	9
32^{*}	8	9
$33^{* *}$	8	9

* Ramp at $50 \mathrm{~A} / \mathrm{s}$
** Ramp at $35 \mathrm{~A} / \mathrm{s}$

Fast ramp, mid-plane quench (A01)

$$
\mathrm{I}=5719 \mathrm{~A}
$$

MIITS $=3.19$

Fast ramp, mid-plane quench (AO2)

Fast ramp, mid-plane quench (A33)

$50 \mathrm{~A} / \mathrm{s}$ to 5 kA , then $35 \mathrm{~A} / \mathrm{s}$

Magnet: HQ01d- Test A32

Ramp-rates quenches

Summary

- HQ01d reached 86% of Iss showing a "typical" quench pattern with instabilities originated in the pole region and most likely caused by slippages.
- The majority of the training quenches in HQ01d occurred in the pole region of coil 8 . Out of those, 9 occurred in layer A, straight section (near VT7) and the rest (6) was distributed between pole and straight sections of both layers.
- The remaining training quenches occurred mostly in the mid-plane of coil 7 (5) , at the side facing coil 8.
- Fast ramp-rate quenches (200, 50, $35 \mathrm{~A} / \mathrm{s}$) occurred in the multi-turn of coil 8 , one ($50 \mathrm{~A} / \mathrm{s}$) in coil 5.

