Tracking for Lepton Colliders: from ILC to CLIC to MuC

Tim Nelson - SLAC

Muon 2011 - Telluride June 30, 2011

Goals

To dissect, *in much greater detail*, new physics discovered by the LHC: Higgs/EWSB, SUSY, Z', Extra Dimensions, ??? This requires:

- A machine with much better defined initial-state kinematics and lower backgrounds than the LHC
- A detector capable of much more precise event reconstruction than LHC detectors. For tracking/vertexing:
 - much less mass than LHC trackers (~ factor of 5-10)
 - $d(1/p_T) < 5 \times 10^{-5} \text{ GeV}^{-1} (\sim CMS/3)$
 - impact parameter $\sigma_{xy} = \sigma_z = 5 \oplus 10/(p sin^{3/2}\theta)$ μm
 - \clubsuit excellent forward performance (to cos θ =0.99, θ =8°)

These requirements have driven development ILC/CLIC detectors and must be considered for any lepton collider that wants to have same physics capabilities.

ILC Machine and Backgrounds

199 ms, no beam

1 ms (2820 bunches)

•••

- 💑 Timing: trains at 5 Hz, 308 ns bunch spacing
 - pulsed power electronics: reduction ~100×
 - single bunch time tagging relatively easy
- Backgrounds: dominated by e+e- pairs
 - rate/bunch crossing is very small
 - can relax single-bunch timing to reduce power
- Radiation Environment: ~1/10000 LHC very few technologies excluded, even in VXD.

イイイイイイ

SiD Concept

 \oplus

SiD Concept

SiD Technologies

🔒 VXD

- fine pixels (of order 20 microns x 20 microns)
- readout electronics integrated with sensor to reduce material
- best time tagging available within gas cooled power budget (13 mW/cm²)
- time tagging from 1~150 bunches depending upon technology

🔒 TKR

- loconventional single-sided microstrip sensors (double-sided modules in endcaps)
- Iow-mass readout electronics and support structure
- single-bunch time tagging with low power consumption (0.5 mW/cm²)
- 👶 total power <500W allows gas cooling

 $- \bigcirc$

-0

 \oplus

SiD Performance

Little change with longer timing windows

ILD Concept

TPC core provides pattern recognition for all kinds of tracks

Silicon on all sides necessary to provide timing information and achieve desired pT resolution

	External tracking detector (SET)		
	Time Projection Chamber (TPC)	TPC endplate and electronics	Endcap Tracking Detector (ETC)
Si Inner Tracker (SiT)			
SI Vertex Detector	Forward Tracking Disks (FTD)		

 \oplus

ILD Concept

ILD Technologies

VXD: basically the same options as SiD

TPC:

Iow-mass endplate

- gas with high drift velocity (>50 micron/nm)
- 👶 gating grid to sweep out ion layer
- Pad/FADC readout or CMOS pixel readout as cooling/material allow
- FTD, ETD, SIT, SET: undetermined mix of Si pixels, Si strips (single or double sided), GEMs, straw tubes.
- Readout ASIC for Si microstrips envisioned to provide timing in two ranges:
 - "coarse": 500 ns for bunch tagging
 - "fine": < I ns for position measurement along strip.</p>
 Not yet proven. Power/channel of prototypes is 50x that for SiD readout chip.

ILD Performance

Background Sensitivity

 \oplus

CLIC-SiD Detector Performance

Both CLIC-SiD and CLIC-ILD retain good performance

MuC Machine Parameters

- A Timing: single bunches every ~10 μ s
 - 🔒 no power pulsing
 - time tagging bunch a non-issue
- Backgrounds: photons, neutrons, muons, hadrons, kitchen sinks.
 - rinner ~3x that for ILC? (effects tagging?)
 - need timing >1 (>>1?) generation beyond current pixel devices: cooling.
- Radiation Environment: ~1/10 LHC need rad-hard technologies and actively cooled sensors

Mars I 5/ILCroot Group

+

MuC-SiD?

- Modified 4th concept detector is a good first guess
- Pixels are obviously needed everywhere (no point in discussing ILC tracker technologies in detail)
- Single muons with no backgrounds look OK.

 \oplus

How much does efficiency loss from cones hurt physics?

Mars 15/ILCroot Group

Muc Rook

Mars 15/ILCroot Group

MuC Backgrounds

Mars I 5/ILCroot Group

	photons	neutrons	e+e-
Absolute MARS yields, # of particles (weight included, both beams)	1.77e+08	0.40e+08	1.03e+06
Fraction of particles producing hits in CT sensitive volumes	~2.8%	~0.6%	~43%
# of MARS particles "seen"	5.0e+06	0.24e+06	0.44e+06

Photons Ekin ~ 0.2 - 100 MeV
 Neutrons Ekin ~ 0.1 - 1000 MeV
 e⁺e⁻ Ekin ~ 0.2 - 100 MeV

Cluster Properties?

- Photon hits outnumber neutron hits 20:1.
- Pixels hit by neutrons outnumber those hit by photons by a huge factor in most layers.
- Are neutrons creating huge clusters in the pixel detectors that could be thrown away?
- What about cluster shapes?

Mars I 5/ILCroot Group

Timing Cuts

Mars I 5/ILCroot Group

Detector type	Reconstructed Tracks (full simu)	Reconstructed Tracks (fast simu)	Timing cut is clearly critical
Det. A (no timing)	Cannot calculate	Cannot calculate	
Det. B (7 ns fixed gate)	75309	64319	
Det. C (3 ns adjusteble gate)	6544	4639	<u>χ²/ndf vs Impact Parameter</u> 10
Det. D (1 ns adjusteble gate)	1459	881	Det. B

Detector type	Reconstructed Tracks (full simu)	Reconstructed Tracks (fast simu)
Det. A (no timing)	Cannot calculate	Cannot calculate
Det. B (7 ns fixed gate)	475	405
Det. C (3 ns adjusteble gate)	11	8
Det. D (1 ns adjusteble gate)	3	1

Track quality also important but IP cut very restrictive

Paired Layers

- Use of paired silicon layers in high density environments has become a very popular concept (e.g. sLHC tracking concepts.)
- Together with time this can be a very powerful discriminator
- Requires layer spacing << hit density or low-momentum tracking suffers: more useful in inner layers
- Increases power/material challenges

MuC-ILD?

- ILD TPC gases integrate ~40 bunches at MuC
- No way to reject backgrounds based upon timing
- ILC TPC gas presents ~1% X₀ to backgrounds
 - photon conversion rate not negligible: TPC is a nice x-ray detector
 - significant fraction of background hits can affect large regions (many voxels/hit)
- Although I have not checked carefully, quick calculations indicate that TPC is a lost cause here by orders of magnitude.

Summary of Ideas/Issues

Neither ILD nor SiD is close; need to invent, simulate a more realistic detector:

- 🔒 Timing:
 - Two models of timing; 5ns, Ins; each with some assumed power budget
 - More realistic models of detector material for each given power consumptions

Spatial correlations:

- Try paired layers at some reasonable spacing (~1mm)
- Need specialized tracking code to take advantage of this configuration

🔒 Studies:

- 👶 need to lower gamma, neutron thresholds
- need to stop simulating backgrounds beyond some broad time gate (5ns?)
- need to investigate cluster properties
- heed to strive for apples/apples comparison with ILC/CLIC tracking performance: p_T resolution, IP resolution, eff. vs. pT and θ for more massive detector a good start.