

Power Deposition in the Open Midplane Dipole

H. Kirk(BNL), X. Ding(UCLA, PBL)

Muon Collider 2011 June 27-July 1, 2011 --- Telluride

OUTLINE

- Parameters
- Power Deposition with Varied Vacuum Gaps
- Power Deposition of Real Field with Flux Return vs. Artificial Uniform Field
- Power Deposition with Collimator and Liner
- Conclusions

Muon Collider

- Muon: E=750 GeV
- Circumference: 2500 m
- Transverse: 25π mm.mrad
- Momentum acceptance: ±1.2%
- 2×10^{12} muons/bunch
- 15 Hz repetition rate
- 1000 turns

Ring Dipoles

- P₀=750 GeV/c
- Bρ≅3.3356 × P=2502 Tm
- B₀=10 T, l=6 m
- θ =0.3BI [Tm]/P [GeV/c]=24 mrad or 1.375 deg

Muon Decay

- The number of muons is $N_0 = 2 \times 10^{12}$ at t=0.
- The muon circulating time per turn is 8.3 × 10⁻⁶ sec. In 1000 turns <u>8.3 × 10⁻³ sec</u>. (Muon life time at 750GeV is <u>15.6 × 10⁻³ sec</u>)
- The decays per meter per second is 5 × 10⁹.
 15 × 2 × 10¹² × [1-exp(-8.3 × 10⁻³)/(15.6 × 10⁻³)]/2500= 5 × 10⁹.

Heat Load

- The dynamic heat load from muon decay is about <u>0.2 kW/m</u> for each charge state, mostly in the horizontal plane and inner side of the storage ring.
- The energy is deposited via electromagnetic showers induced by high-energy decay electrons as well as synchrotron radiation

Heat Load II

- Taking into the account the Carnot ratio and a typical refrigeration efficiency, then <u>for each</u>
 <u>1% of the decay energy</u> deposited into the cold (4^oK)mass, <u>4.5MW of wall plug power</u>
 will be required for heat removal.
- At the FNAL Collider Ring Magnet Workshop
 <u>1%</u>energy flow into the cold mass was
 considered to be a reasonable target goal

The OMD Principle

Beam Absorber

Upper-right quadrant X-section showing an outboard and in inboard coil

Schematic showing the forces on the Outboard and Inboard coils

Aspect Ratio: X:Y = 1:1.0

Triple Dipole Model w/o Collimators

Aspect Ratio: X:Y = 1:1.0

Power Deposition with Varied Magnetic Gap

(in percent of the total power of 6 kW)

Geometry and fieldmap	Coil + Iron	STST vacuum chamber	Other
30 mm magnetic gap (Full vacuum gap of 26 mm)	3.43%	14.67%	81.9%
60 mm magnetic gap (Full vacuum gap of 56 mm)	0.53%	5.4%	94.07%
100 mm magnetic gap (Full vacuum gap of 96 mm)	0.002%	0.973%	99.025%

Real field with Flux Return vs. Artificial Uniform field

Aspect Ratio: X:Y = 1:1.0

Aspect Ratio: X:Y = 1:1.0

Power Deposition

(Real Field with Flux Return vs. Artificial Uniform Field) (in percent of the total power)

Geometry and field map with 30 mm magnetic gap (Full vacuum gap of 26 mm)	Coil + Iron + STST vacuum chamber	Other
Real Field with Flux Return	18.1%	81.9%
Artificial Uniform Field	1.3%	98.7%

New Triple Dipole Model with Collimator (2.6cm aperture)

Aspect Ratio: Y:Z = 1:10.3333

Aspect Ratio: X:Y = 1:1.0

Power Deposition with Collimator and Liner in a Triple Dipole Model

- Geometry and field map with 60 mm magnetic gap.
- The liner is 10 mm thick thermal insulation (Be) and 5 mm thick Tungsten on each side.
- The full vacuum gap is 26 mm.
- Muons decay in the 6 m beam path inside the 1st dipole.

Power Deposition without Liner and Collimator

		Power (W)	Percent of total (%)
Dipole (Coil+Iron)	1 st	2.175	
	2 nd	25.855	
	3 rd	10.428	
	sum	38.458	3.315
STST vacuum chamber		51.59	4.445
Total "Visible"		1160.16	

Power Deposition with Liner and Collimator

		Power (W)	Percent of total (%)
Dipole (Coil+Iron)	1 st	1.168	
	2 nd	3.689	
	3 rd	0.047	
	sum	4.904	0.43
Collimator	1 st	828.9	72.25
	2 nd	244.73	21.33
	3 rd	5.04	0.44
	sum	1073.63	94.0
STST vacuum chamber		48.63	4.2
Liner (Be+W)		9.82	0.9
Total "Visible"		1147.29	

Conclusion

- The flux return of the OMD dipole field is responsible for directing some energy flow into the cold mass of the dipole
- This can be mitigated by increasing the magnetic gap of the dipole
- A 6cm magnetic gap appears to be adequate to restrict to a tolerable level the energy flow into the cold mass of the dipoles

Open Midplane Dipole Proof-of-Principle PBL/BNL Phase 2 SBIR Proposal

The goal is to provide a test of the design principles of an OMD

The design incorporates key coldmass components—Nb₃Sn coils, support structure, iron yoke & space to accommodate a warm absorber.

