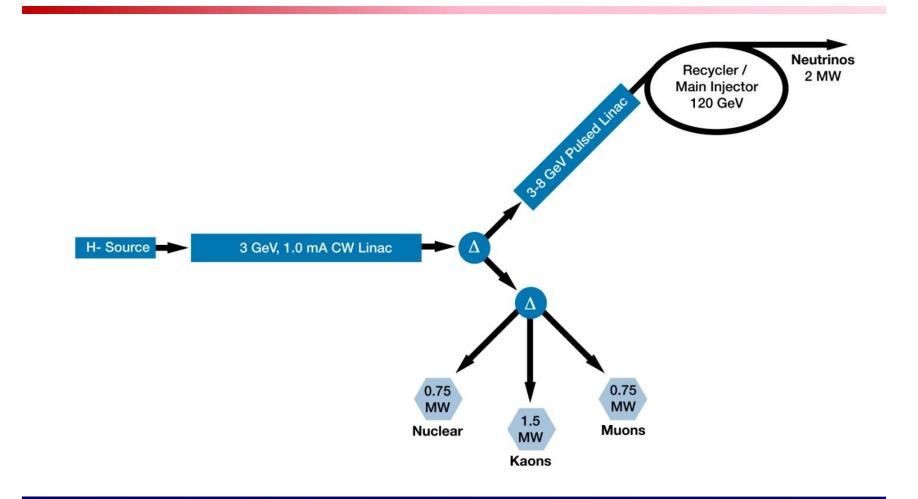
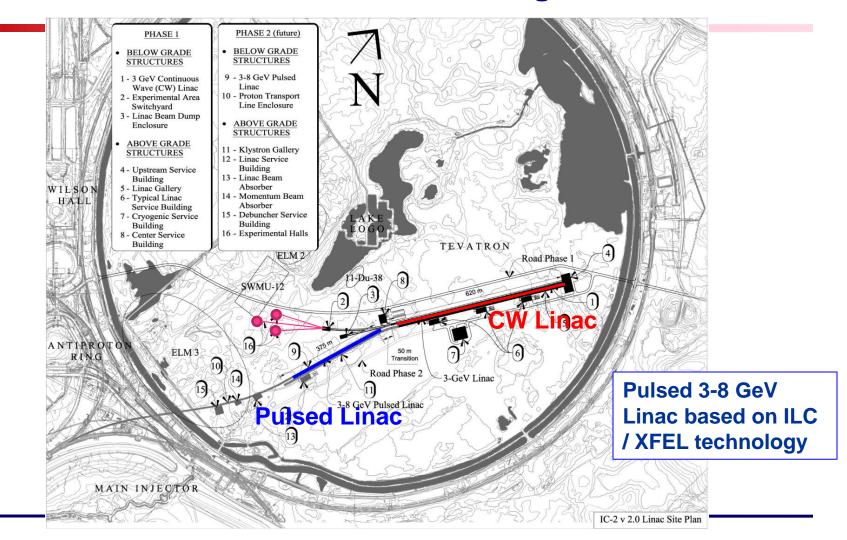
Project X Upgrade Options for 4 MW at 8 GeV


Sergei Nagaitsev

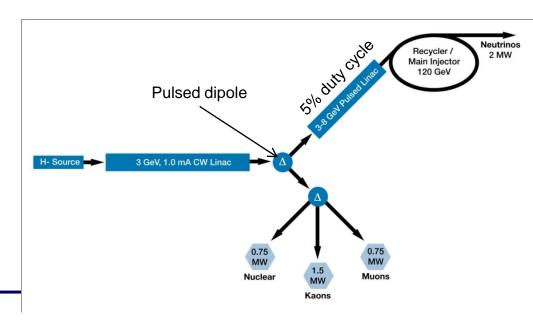
June 28, 2011

Reference Design

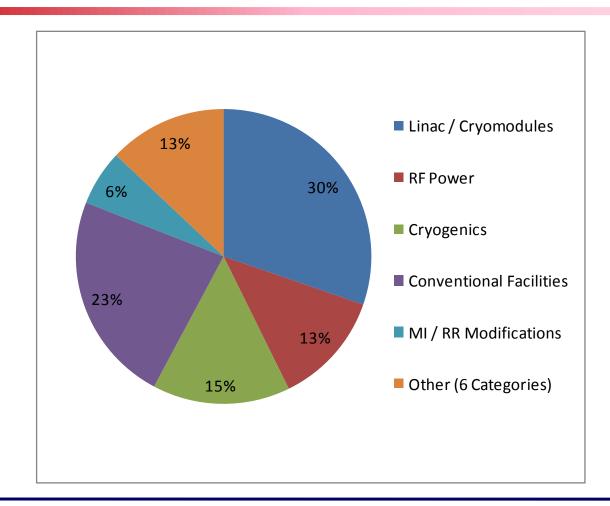

Reference Design Capabilities

- 3 GeV CW superconducting H- linac with 1 mA average beam current.
 - 3 MW beam power at 3 GeV
 - Flexible provision for variable beam structures to multiple users
 - CW at time scales >1 $\mu sec,$ 15% DF at <1 μsec
 - Supports rare processes programs at 3 GeV
 - Provision for 1 GeV extraction for nuclear energy program
- 3-8 GeV pulsed linac capable of delivering 340 kW at 8 GeV
 - Supports the neutrino program
 - Establishes a path toward a muon based facility
- Upgrades to the Recycler and Main Injector to provide ≥ 2 MW to the neutrino production target at 60-120 GeV.

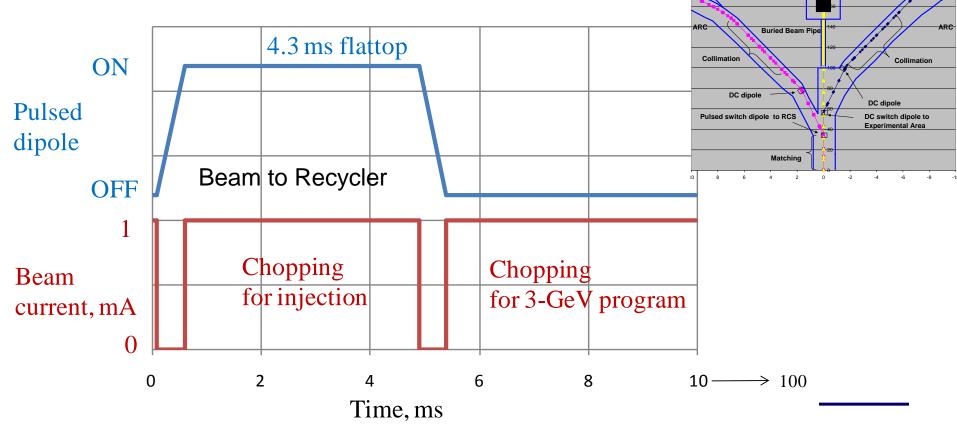
Reference Design Provisional Siting



Reference design: accelerator scope

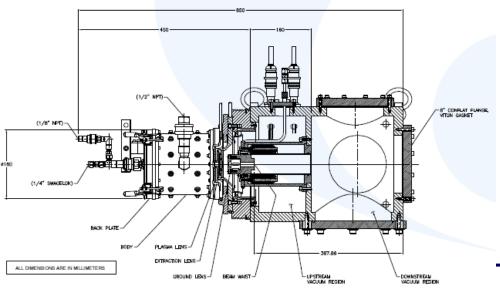

- Warm cw front end 162.5 MHz, 5 mA (H- ion source, RFQ, MEBT, chopper)
- 3-GeV cw SCRF linac (325, 650 MHz), 1-mA ave. beam current
- Transverse beam splitter for 3-GeV experiments
- 3-8 GeV: pulsed linac (5% duty cycle), 1.3 GHz
- Recycler and MI upgrades
- Various beam transport lines

Reference design: cost distribution



Linac beam current

 Linac beam current has a periodic time structure (at 10 Hz) with two major components.

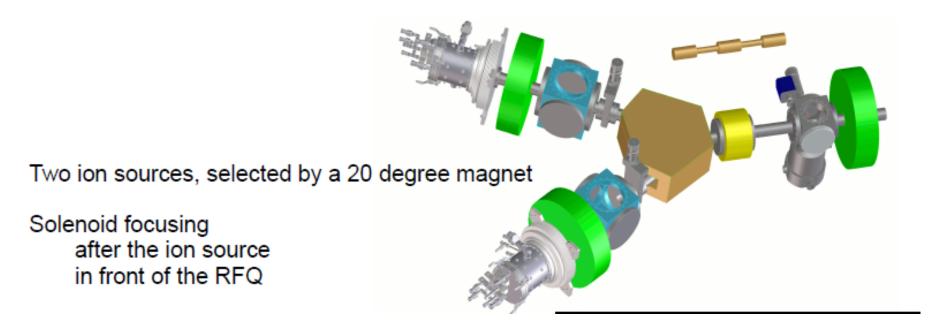

Chopping for injection

- RF frequency at injection into the Recycler : \sim 50 MHz
- Chopper needs to provide a kicker gap (~200 ns per 11 µs) and needs to remove bunches that fall into "wrong" phase of ring rf voltage.
 - 50% of bunches are removed (ion source at 2 mA)
 - 80% of bunches are removed (ion source at 5 mA)

TRIUMF Type DC Volume-Cusp H⁻ Ion Source Model: IS+15mA+30keV+H⁻

Ion source: TRIUMFtype H- DC ion source

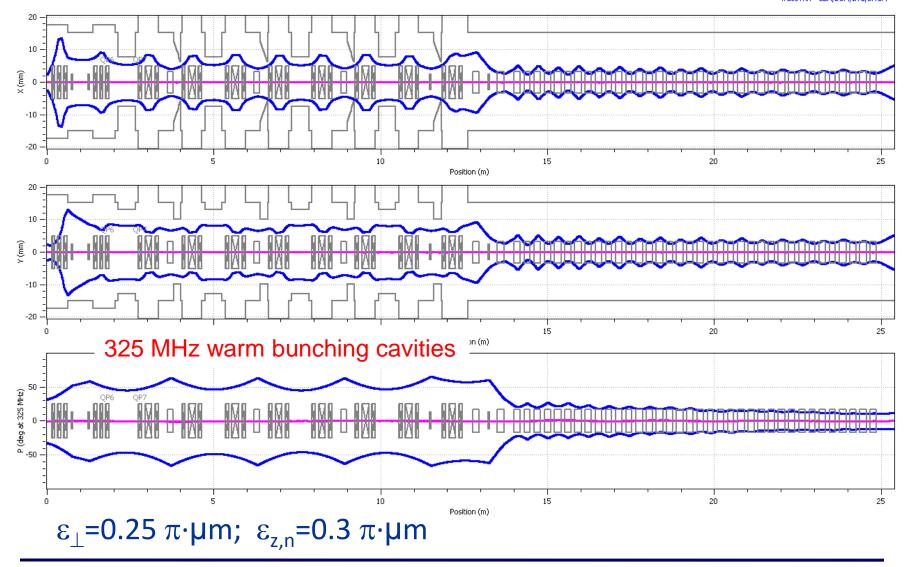
Delivered to LBNL: June 2011


Model: IS • 15mA • 30keV • HSPECIFICATIONSIon Source SpecificationsHParticle Type:HBeam Current:0 to 15 mABeam Kinetic Energy:20 to 30 keVNormalized 4rms Emittance:<1 mm×mrad</td>Beam Purity:>98%Filament Lifetime:>350 hours at peak currentBeam Current Stability:±3% over 24 hours

Dehnel - Particle Accelerator Components and Engineering, Inc.

Proposed LEBT configuration

• LEBT will have a chopper to provide gaps of >100 ns



Input energy	30 keV
Output energy	2.1 MeV
Vane-vane voltage	58 kV
Length	446 cm
S'Fish power/cm	120 watts
Total Power	<100 kW

Wall Power Density 0.6 w/cm²

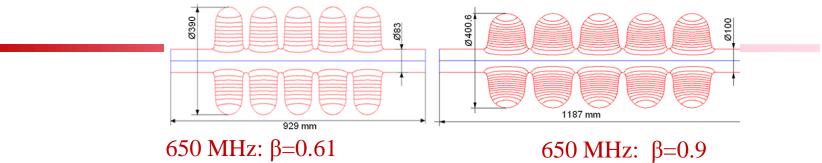
	I (mA)	ex	ey	ez	keV-nsec	transm	Data Set
	0	0.01178	0.01173	0.04047	1.27	98.9	30.05
	1	0.01205	0.01260	0.03129	0.98	97.8	30.01
	2	0.01305	0.01297	0.02549	0.80	96.4	30.05
	3	0.01275	0.10264	0.02051	0.64	95.8	30.05
	4	0.01192	0.10224	0.01939	0.61	95.5	30.05
	5	0.01115	0.01190	0.01989	0.62	95.5	30.05
June 28, 2011 - S. Nagaitsev	7 10	0.01166 0.01859	0.01179 0.01806	0.02404 0.02883	0.75 0.90	95.5 95.3	30.05 30.10

Broject X MEBT design: 5 mA at 162.5 MHz beam


SRF Linac Technology Map

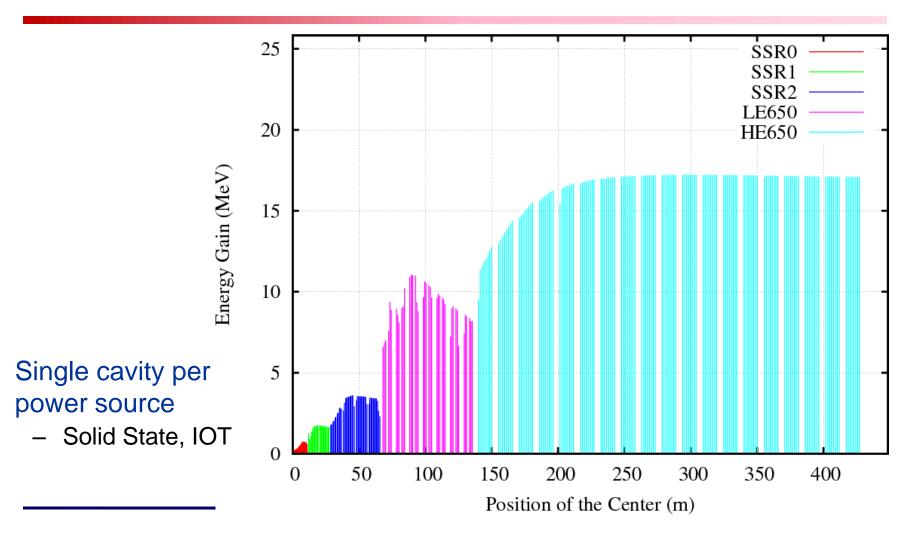
β =0.11	β =0.22	β=0.4	β =0.61	β =0.9	β =1.0
\sim		— CW —			$\rightarrow \leftarrow Pulsed \rightarrow$
	325 MHz 2.5-160 Me	V) MHz -3 GeV	1.3 GHz 3-8 GeV
Section	Freq	Energy (Me	eV) Cav/mag	g/CM	Туре
SSR0 (β _G =0.	11) 32	5 2.5-10	18 /18	8/1 9	SSR, solenoid
SSR1 (β _G =0.	22) 32	5 10-42	20/20/	20/20/ 2 SSR, so	
SSR2 (β _G =0.	4) 32	5 42-160	40/20	/4	SSR, solenoid
LB 650 (β _G =	=0.61) 650) 160-460	36 /24	36 /24/6 5-cell elliptical	
HB 650 (β _G	=0.9) 650	60-3000) 160/40	160/40/20 5-cell elliptica	
ILC1.3 (β _G =	1.0) 130	0 3000-800	0 224 /28	<u>/28 9-ce</u>	ell elliptical, quad

325 MHz spoke cavity families

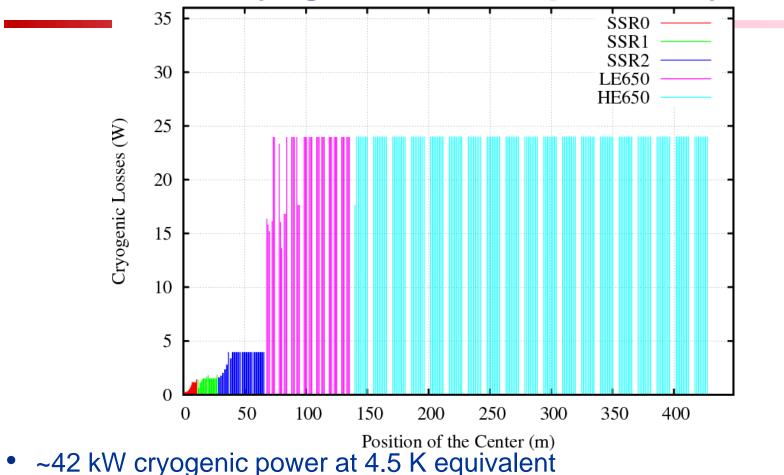


cavity type	β_{G}	Freq MHz	U _{acc, max} MeV	E _{max} MV/m	B _{max} mT	R/Q, Ω	G, Ω	*Q _{0,2K} ×10 ⁹	P _{max,2K} W
SSR0	β=0.114	325	0.6	32	39	108	50	6.5	0.5
SSR1	β=0.215	325	1.47	28	43	242	84	11.0	0.8
SSR2	β=0.42	325	3.34	32	60	292	109	13.0	2.9

650 MHz cavities

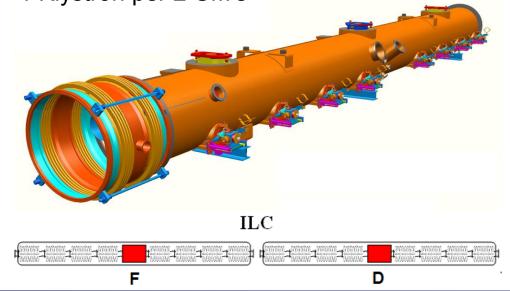


Parameter		LE650	HE650
β_geom		0.61	0.9
R/Q	Ohm	378	638
G-factor, Ohm		191	255
Max. Gain/cavity (on crest)	MeV	11.7	19.3
Acc. Gradient	MV/m	16.6	18.7
Max surf. electric field	MV/m	37.5	37.3
Max surf. magnetic field,	mT	70	70
Q ₀ @ 2° K	×10 ¹⁰	1.5	2.0
P _{2K} max	[W]	24	29

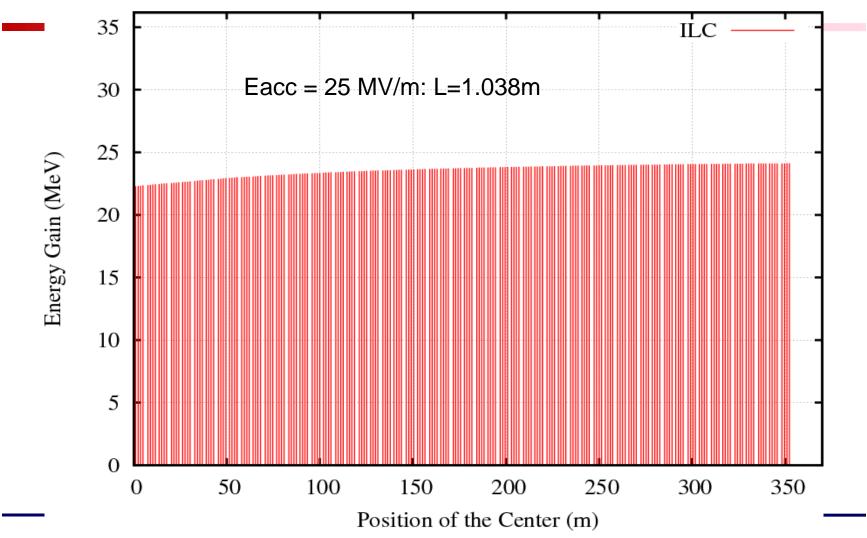


Energy Gain per Cavity

3 GeV CW Linac Cryogenic Losses per Cavity


Project X

3 – 8 GeV acceleration


- Pulsed linac based on the ILC technology
 - 1.3 GHz, 25 MV/m gradient, ≤5% duty cycle
 - considering 8-30 ms pulse length
 - ~250 cavities (28 ILC-type cryomodules) needed.
 - Simple FODO lattice
 - 1 Klystron per 2 CM's

Cavity Energy Gain

Proposed power upgrade for Project X linac

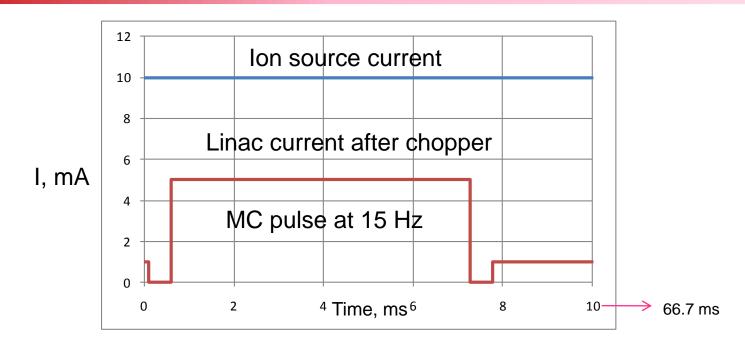
- To attain 4 MW at 8 GeV we propose:
 - to increase the beam current during the injection pulse to 5 mA (10 mA peak);
 - to increase the rep. rate to 15 Hz;
 - to increase the beam pulse length to 6.7 ms (10% duty cycle).

Impact of upgrade on linac subsystems

- Front End: no impact (it is already being designed for 10 mA ave.)
- CW linac: the impact depends principally on the demand for beam power at 3 GeV.
 - Worst-case scenario: 10% duty cycle 5 mA for MC/NF and 90% duty cycle 1 mA
- Pulsed linac: the impact is well understood
 - More rf power (because of higher current);
 - Upgrade power couplers (because of higher current);
 - More cryo capacity (because of a longer pulse);
- Conventional facilities
 - more water cooling;
 - more room for Klystrons;
 - the impact is not fully understood yet.

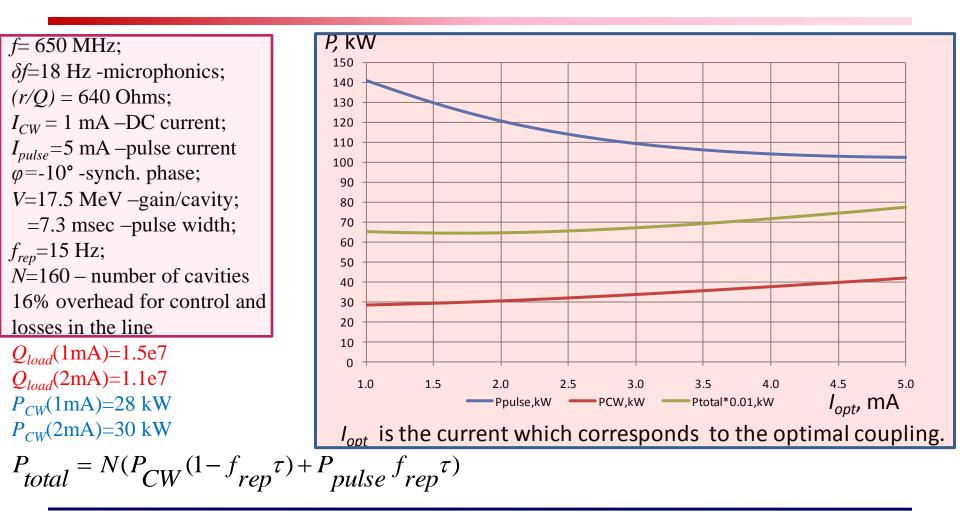
Pulsed linac (1.3 GHz)

	Reference Design Report (RDR)	Upgrade for Muon Collider
Rep rate, [Hz]	10	15
RF period, [msec]	100	67
Duty cycle, [%]	4.3	10
Fill time ,[msec]	3.0	1
Beam pulse, [msec]	4.3	6.7
Beam current, [mA]	1	5
4.5 K Equivalent heat load, [kW]	8	13
Normalized cryo plant cost, [-]	1	1.3


Linac parameters				
Eacc, [MV/m]	25			
Q ₀ , [-]	1.50E+10			
Beam Energy, [GeV]	8			
Number of Cavities	224			
Number of Cryomodules	28			

- Average rf coupler power:
 - RDR: 2 kW
 - Upgrade: 15 kW
- Pulsed rf power:
 - Upgrade: 125 kW per cavity (~7.5 ms at 15 Hz)
 - such Klystrons exist (e.g. Philips YK1240)

CW Linac



- With present technology: rf power to beam power is not 100% efficient. Some power will be reflected and transferred to heat.
- Cryogenic power remains the same in RDR

RF power requirements at 650 MHz

Summary

- A plausible upgrade path to 4 MW at 8 GeV for Project X exists and includes:
 - increasing the beam current during the injection pulse to 5 mA (10 mA peak);
 - increasing the rep. rate to 15 Hz;
 - increasing the beam pulse length to 6.7 ms (10% duty cycle).
- Such an upgrade would reuse > 75% of RDR cost.