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Higgs Physics

At the LHC, the h fully covered, but the H and A ... At
√

s = 14 GeV, still a large hole, especially MH,A > 500 GeV:
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The status of tth, h→ bb is still under discussion.



At lepton colliders, pair production rather robust:
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Once crossing the pair threshold, observation straightforward.

(rather model-independent, like in THDM etc.)



Most unique of all at a µC:
The s-channel resonant production.
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Muon collider sufficient to resolve H, A.
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• MH: peak, accurate!
• Γtot: profile, accurate by scanning!
• σmeasured : (b̄b)/(tt̄) ≈ m2

b /m2
t tan4 β, (b̄b)/(ττ) ≈ m2

b /m2
τ upto radiative corrections.

• σtot = (b̄b) + (tt̄)+(smaller ones) ⇒ Γ(µ+µ−)! upto missing channels.
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• MH: peak, accurate!
• Γtot: profile, accurate by scanning!
• σmeasured : (b̄b)/(tt̄) ≈ m2

b /m2
t tan4 β, (b̄b)/(ττ) ≈ m2

b /m2
τ upto radiative corrections.

• σtot = (b̄b) + (tt̄)+(smaller ones) ⇒ Γ(µ+µ−)! upto missing channels.

• Compare with theory: Γ(H, A→ µ+µ−), learn how many H, A’s contributing.

• If tt̄, ττ decays reconstructed, hope to see CP violation!



Strong electroweak dynamics

WLWL scattering

If no hi/SUSY found at the LHC, WLWL Scattering must reveal new dynamics

• Unitarity scale: ΛEW (WLWL→WLWL) ∼
√

8π v ∼1.2 TeV.
√

sW ∼ 2 TeV ⇒ √sf ∼ 4 TeV
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∼ 2 scalar H0,

≫ 1 vector ρ0
TC,

∼ 2/3 LET
√
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≫ 1 vector ρ0
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∼ 2/3 LET
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•

Λf(WW → ff̄) =
8πv2

3mf
∼

{

3 TeV mt = 175 GeV
97 TeV mb = 5 GeV.

So, consider µ+µ−→ ννW+W−, ννZZ, ννtt̄ via H, ρTC or non-resonance.
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EW states that could be (easily) missed at the LHC):

µ+µ− → H̃+H̃−, H̃0H̃0, ℓ̃ℓ̃.

Observation should be straightforward (once crossing the pair threshold)

Mass/coupling measurements the goal

(Astro/Cosmo connection via dark matter).

Direct DM production: µ+µ−→ γ + Emiss

Decay edges: µ+µ−→ µ̃+µ̃− → µ+µ−+ Emiss (χ̃0χ̃0)



Special topology: “Antler decay” µ+µ− → µ̃+µ̃−→ µ+µ−+ Emiss

CLIC, µC: e+e−, µ+µ− → B1 + B̄2 → a1X1 + a2X2.
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a2X2 ← B2 ⇐ D ⇒ B1 → a1X1
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Maximum Maa configuration.

• Parallel: (cos θ1, cos θ2) = (±1,∓1) ⇒ +⇒, ⇐ +⇐
Zero Maa configurations.

• Head-on: (cos θ1, cos θ2) = (−1,−1) ⇒ +⇐
Medium Maa configuration.



Origin of the cusps:

a2X2 ← B2 ⇐ D ⇒ B1 → a1X1

Limiting cases (at the corners):

• Back-to-back: (cos θ1, cos θ2) = (+1,+1) ⇐ +⇒
Maximum Maa configuration.

• Parallel: (cos θ1, cos θ2) = (±1,∓1) ⇒ +⇒, ⇐ +⇐
Zero Maa configurations.

• Head-on: (cos θ1, cos θ2) = (−1,−1) ⇒ +⇐
Medium Maa configuration.

• Upon variable projection (losing info), singularities may be developed.

• It is purely kinematical, and new (rigorous singularity theorems in math).
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The difference between (s)LHC and lepton colliders: obvious.

The main difference between CLIC and µC:

1. s-channel resonance production, especially Higgs-like.

2. Flavor dependent physics.
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µC: 1. beam energy resolution;

2. machine/detector backgrounds (in low ET , pT ).
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θ ∼ 12◦ 80% pol. pol.

µ-Collider RE ∼ 0.1% scan? ... AFB scan
θ ∼ 20◦, polT? pol.L? 10% pol.

µ-Collider threshold scan

The main difference between CLIC and µC:

CLIC: 1. beam polarization;

2. low machine backgrounds

µC: 1. beam energy resolution;

2. machine/detector backgrounds (in low ET , pT ).

BUT, seems to me that the machine backgrounds are NOT a problem

for our physics signal identifications. only become a problem for precision

measurements.


