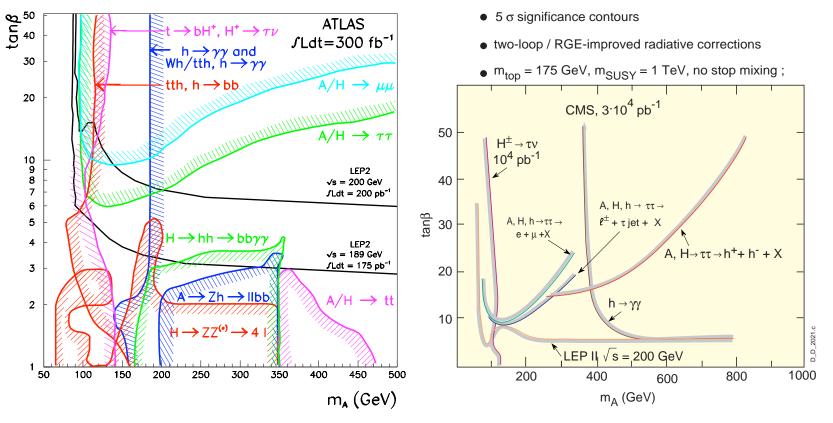
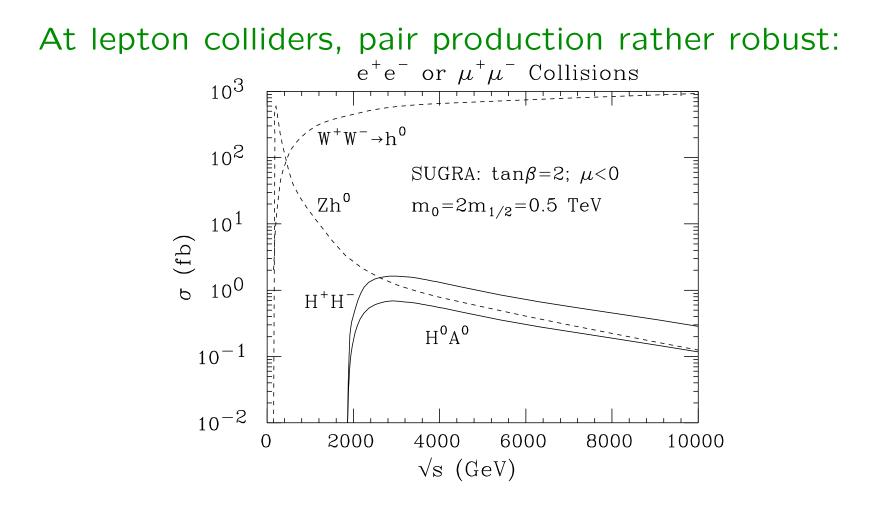
Physics Cases For Muon Colliders

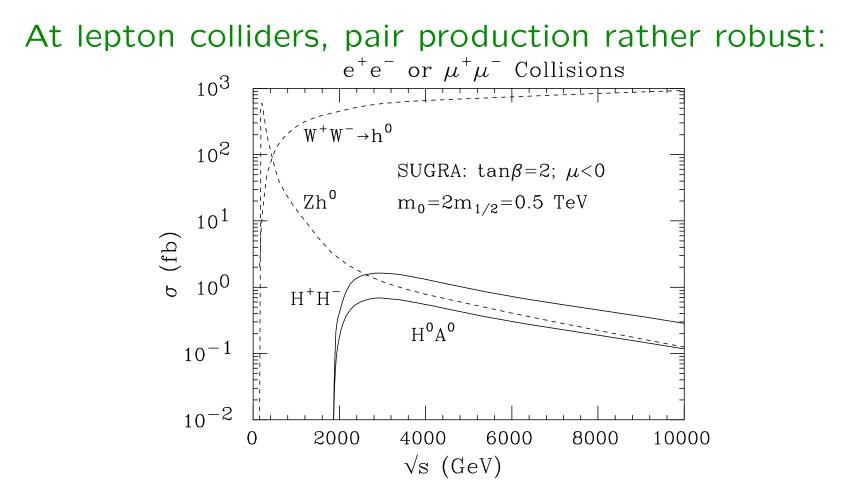
Joint Presentation by Jack Gunion and Tao Han Continued

Muon Colliders Physics Workshop (Telluride, June 27–July 1, 2011)

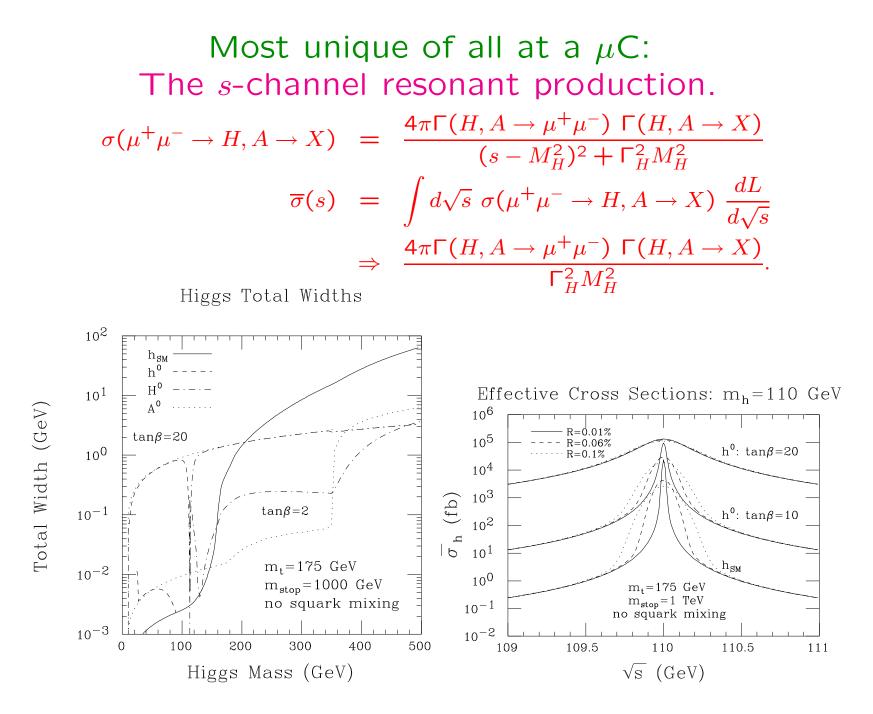

Higgs Physics

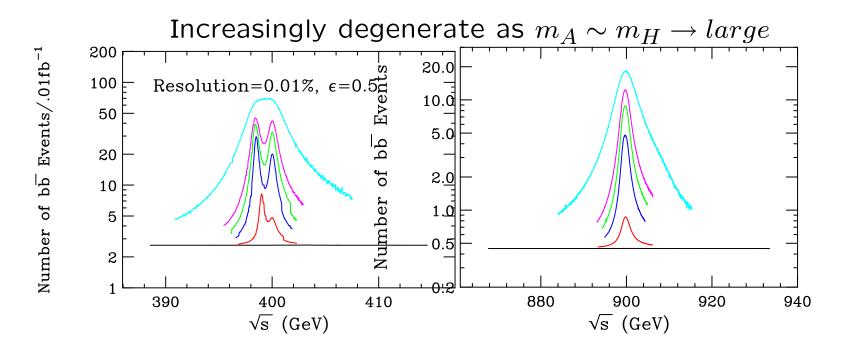
At the LHC, the h fully covered, but the H and A ... $\sqrt{s} = 14$ GeV, still a large hole, especially $M_{H,A} > 500$ GeV:


Regions of the MSSM parameter space (m_A , tg β) explorable through various SUSY Higgs channels

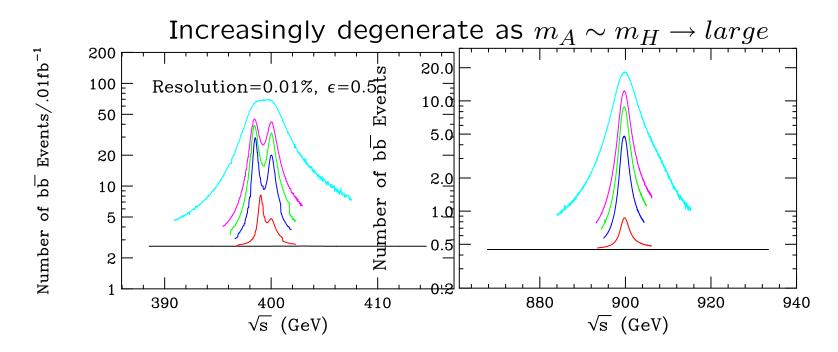

Significance contours for SUSY Higgses

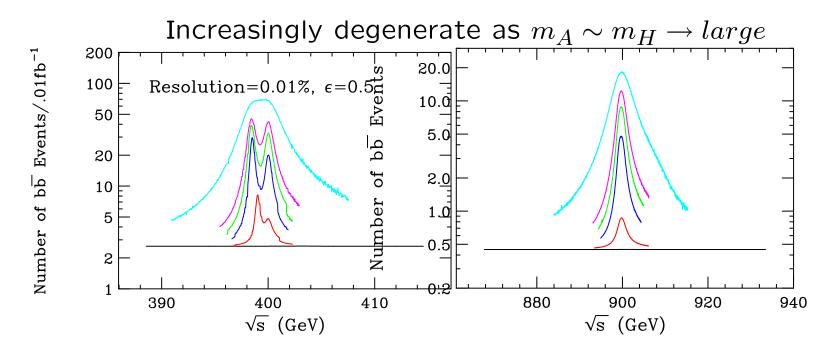
At


The status of $t\overline{t}h, h \rightarrow b\overline{b}$ is still under discussion.

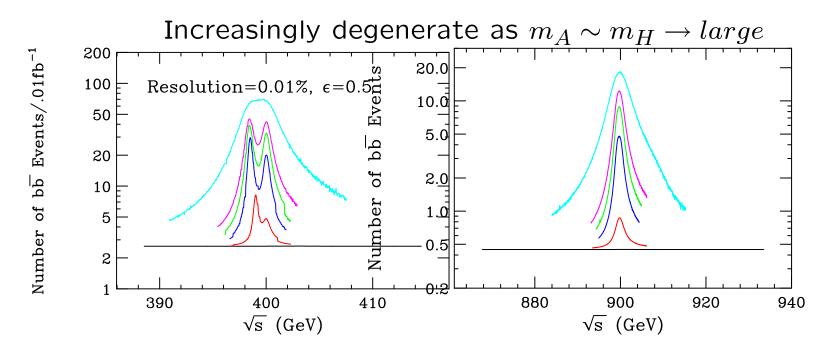


Once crossing the pair threshold, observation straightforward. (rather model-independent, like in THDM etc.)


Most unique of all at a
$$\mu$$
C:
The *s*-channel resonant production.
 $\sigma(\mu^+\mu^- \to H, A \to X) = \frac{4\pi\Gamma(H, A \to \mu^+\mu^-)\Gamma(H, A \to X)}{(s - M_H^2)^2 + \Gamma_H^2 M_H^2}$
 $\overline{\sigma}(s) = \int d\sqrt{s} \ \sigma(\mu^+\mu^- \to H, A \to X) \ \frac{dL}{d\sqrt{s}}$
 $\Rightarrow \frac{4\pi\Gamma(H, A \to \mu^+\mu^-)\Gamma(H, A \to X)}{\Gamma_H^2 M_H^2}.$


Muon collider sufficient to resolve H, A.

Even at high mass, there is (almost) sufficient info for the Higgs sector:


Even at high mass, there is (almost) sufficient info for the Higgs sector: $\overline{\sigma}^{measured}(b\overline{b}, t\overline{t}, \tau\tau) \Rightarrow \frac{4\pi\Gamma(H, A \to \mu^+\mu^-) \Gamma(H, A \to X)}{\Gamma_{tot}^2 M_H^2}.$

Even at high mass, there is (almost) sufficient info for the Higgs sector:

$$\overline{\sigma}^{measured}(b\overline{b}, t\overline{t}, \tau\tau) \Rightarrow \frac{4\pi\Gamma(H, A \to \mu^+\mu^-) \Gamma(H, A \to X)}{\Gamma^2_{tot}M_H^2}.$$

- M_H : peak, accurate!
- Γ_{tot} : profile, accurate by scanning! $\overline{\sigma}^{measured}$: $(b\overline{b})/(t\overline{t}) \approx m_b^2/m_t^2 \tan^4 \beta$, $(b\overline{b})/(\tau\tau) \approx m_b^2/m_\tau^2$ upto radiative corrections.
- $\overline{\sigma}^{tot} = (b\overline{b}) + (t\overline{t}) + (\text{smaller ones}) \Rightarrow \Gamma(\mu^+\mu^-)!$ upto missing channels.

Even at high mass, there is (almost) sufficient info for the Higgs sector:

$$\overline{\sigma}^{measured}(b\overline{b}, \ t\overline{t}, \ \tau\tau) \quad \Rightarrow \quad \frac{4\pi\Gamma(H, A \to \mu^+\mu^-) \ \Gamma(H, A \to X)}{\Gamma_{tot}^2 M_H^2}.$$

- $\begin{array}{l} M_{H}: \text{ peak, accurate!} \\ \Gamma_{tot}: \text{ profile, accurate by scanning!} \\ \overline{\sigma}^{measured}: \ (b\overline{b})/(t\overline{t}) \approx m_{b}^{2}/m_{t}^{2} \tan^{4}\beta, \ \ (b\overline{b})/(\tau\tau) \approx m_{b}^{2}/m_{\tau}^{2} \ \text{ upto radiative corrections.} \end{array}$
- $\overline{\sigma}^{tot} = (b\overline{b}) + (t\overline{t}) + (\text{smaller ones}) \Rightarrow \Gamma(\mu^+\mu^-)!$ upto missing channels.
- Compare with theory: $\Gamma(H, A \to \mu^+ \mu^-)$, learn how many H, A's contributing.
- If $t\bar{t}$, $\tau\tau$ decays reconstructed, hope to see CP violation!

Strong electroweak dynamics

$W_L W_L$ scattering

If no $h_i/SUSY$ found at the LHC, W_LW_L Scattering must reveal new dynamics

• Unitarity scale: $\Lambda_{EW}(W_L W_L \rightarrow W_L W_L) \sim \sqrt{8\pi} v \sim 1.2 \text{ TeV}.$

$$\sqrt{s_W} \sim$$
 2 TeV $\Rightarrow \sqrt{s_f} \sim$ 4 TeV

$$\frac{\sigma(W_L^+ W_L^- \to W_L^+ W_L^-)}{\sigma(W_L^+ W_L^- \to Z_L Z_L)} \begin{cases} \sim 2 & \text{scalar } H^0, \\ \gg 1 & \text{vector } \rho_{TC}^0, \\ \sim 2/3 & \text{LET } \sqrt{s} \ll M. \end{cases}$$

Strong electroweak dynamics

$W_L W_L$ scattering

If no $h_i/SUSY$ found at the LHC, W_LW_L Scattering must reveal new dynamics

• Unitarity scale: $\Lambda_{EW}(W_L W_L \rightarrow W_L W_L) \sim \sqrt{8\pi} v \sim 1.2 \text{ TeV}.$

$$\sqrt{s_W} \sim 2 \text{ TeV} \Rightarrow \sqrt{s_f} \sim 4 \text{ TeV}$$

$$\frac{\sigma(W_L^+ W_L^- \to W_L^+ W_L^-)}{\sigma(W_L^+ W_L^- \to Z_L Z_L)} \begin{cases} \sim 2 & \text{scalar } H^0, \\ \gg 1 & \text{vector } \rho_{TC}^0, \\ \sim 2/3 & \text{LET } \sqrt{s} \ll M. \end{cases}$$

$$\Lambda_f(WW \to f\bar{f}) = \frac{8\pi v^2}{3m_f} \sim \begin{cases} 3 \text{ TeV} & m_t = 175 \text{ GeV} \\ 97 \text{ TeV} & m_b = 5 \text{ GeV}. \end{cases}$$

Strong electroweak dynamics

$W_L W_L$ scattering

If no $h_i/SUSY$ found at the LHC, W_LW_L Scattering must reveal new dynamics

• Unitarity scale: $\Lambda_{EW}(W_L W_L \rightarrow W_L W_L) \sim \sqrt{8\pi} v \sim 1.2$ TeV.

$$\sqrt{s_W} \sim 2 \text{ TeV} \Rightarrow \sqrt{s_f} \sim 4 \text{ TeV}$$

$$\frac{\sigma(W_L^+ W_L^- \to W_L^+ W_L^-)}{\sigma(W_L^+ W_L^- \to Z_L Z_L)} \begin{cases} \sim 2 & \text{scalar } H^0, \\ \gg 1 & \text{vector } \rho_{TC}^0, \\ \sim 2/3 & \text{LET } \sqrt{s} \ll M. \end{cases}$$

$$\Lambda_f(WW \to f\bar{f}) = \frac{8\pi v^2}{3m_f} \sim \begin{cases} 3 \text{ TeV} & m_t = 175 \text{ GeV} \\ 97 \text{ TeV} & m_b = 5 \text{ GeV}. \end{cases}$$

So, consider $\mu^+\mu^- \rightarrow \nu\nu W^+W^-$, $\nu\nu ZZ$, $\nu\nu t\bar{t}$ via H, ρ_{TC} or non-resonance.

EW states that could be (easily) missed at the LHC): $\mu^+\mu^- \rightarrow \tilde{H}^+\tilde{H}^-, \ \tilde{H}^0\tilde{H}^0, \ \tilde{\ell}\tilde{\ell}.$

EW states that could be (easily) missed at the LHC): $\mu^+\mu^- \rightarrow \tilde{H}^+\tilde{H}^-, \ \tilde{H}^0\tilde{H}^0, \ \tilde{\ell}\tilde{\ell}.$

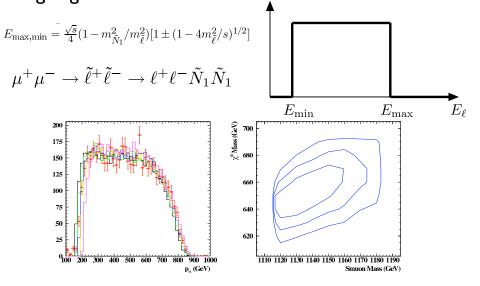
Observation should be straightforward (once crossing the pair threshold) Mass/coupling measurements the goal (Astro/Cosmo connection via dark matter)

(Astro/Cosmo connection via dark matter).

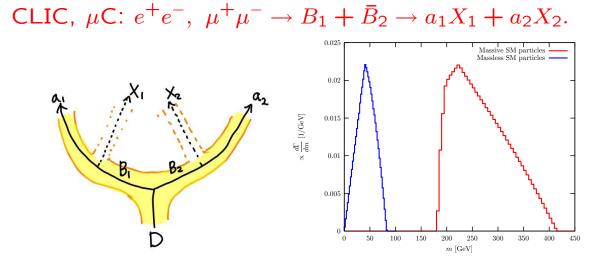
EW states that could be (easily) missed at the LHC): $\mu^+\mu^- \rightarrow \tilde{H}^+\tilde{H}^-, \ \tilde{H}^0\tilde{H}^0, \ \tilde{\ell}\tilde{\ell}.$

Observation should be straightforward (once crossing the pair threshold) Mass/coupling measurements the goal (Astro/Cosmo connection via dark matter).

Direct DM production: $\mu^+\mu^- \rightarrow \gamma + E^{miss}$

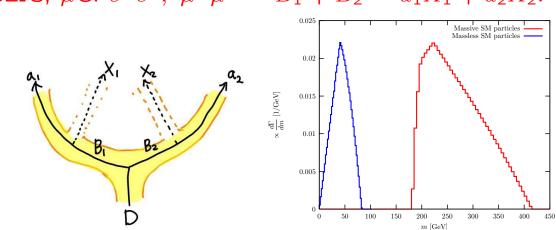

EW states that could be (easily) missed at the LHC): $\mu^+\mu^- \rightarrow \tilde{H}^+\tilde{H}^-, \ \tilde{H}^0\tilde{H}^0, \ \tilde{\ell}\tilde{\ell}.$

Observation should be straightforward (once crossing the pair threshold) Mass/coupling measurements the goal (Astro/Cosmo connection via dark matter).


Direct DM production: $\mu^+\mu^- \rightarrow \gamma + E^{miss}$

Decay edges: $\mu^+\mu^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow \mu^+\mu^- + E^{miss}$ ($\tilde{\chi}_0\tilde{\chi}_0$) LHC -MC synergy

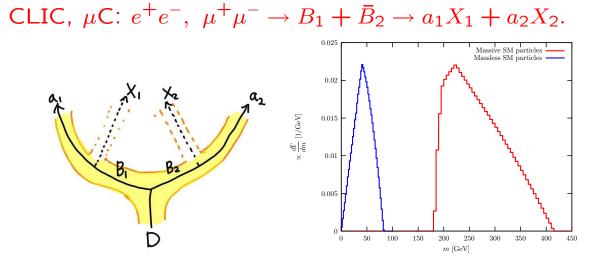
MC gives access to particle masses, couplings, widths, mixing angles $$\rm Events/GeV$$



Special topology: "Antler decay" $\mu^+\mu^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow \mu^+\mu^- + E^{miss}$

Pronounced "peaks" appear, suitable for observation!

Special topology: "Antler decay" $\mu^+\mu^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow \mu^+\mu^- + E^{miss}$

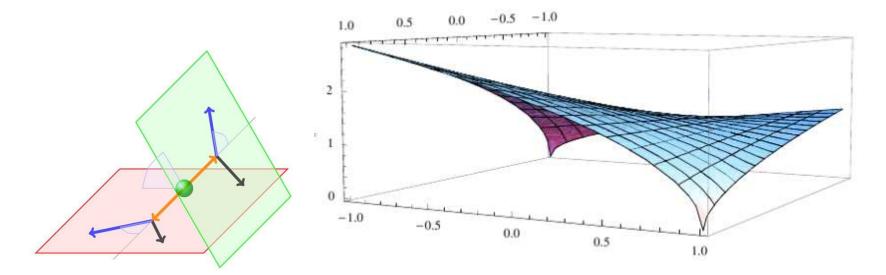


CLIC, $\mu C: e^+e^-, \ \mu^+\mu^- \to B_1 + \bar{B}_2 \to a_1X_1 + a_2X_2.$

Pronounced "peaks" appear, suitable for observation! The end-point, instead of being $M_{aa}^{max} = m_D - 2m_X$, becomes

$$\begin{split} M_{aa}^{\max} &= m_B \left(1 - \frac{m_X^2}{m_B^2} \right) e^{\eta}, \\ M_{aa}^{\text{cusp}} &= m_B \left(1 - \frac{m_X^2}{m_B^2} \right) e^{-\eta}. \end{split}$$

Special topology: "Antler decay" $\mu^+\mu^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow \mu^+\mu^- + E^{miss}$

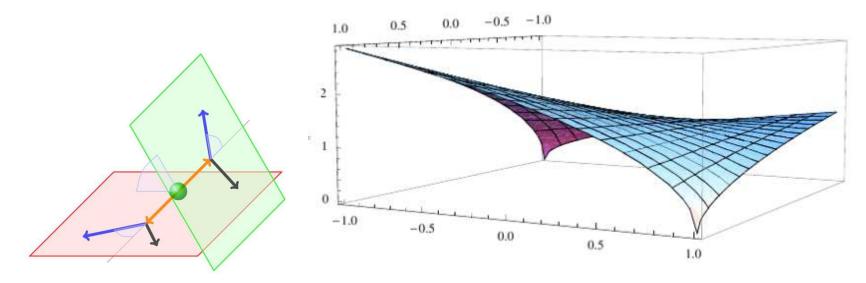

Pronounced "peaks" appear, suitable for observation! The end-point, instead of being $M_{aa}^{max} = m_D - 2m_X$, becomes

$$M_{aa}^{\max} = m_B \left(1 - \frac{m_X^2}{m_B^2} \right) e^{\eta},$$
$$M_{aa}^{\text{cusp}} = m_B \left(1 - \frac{m_X^2}{m_B^2} \right) e^{-\eta}.$$

Thus,

$$M_{aa}^{\max}/M_{aa}^{\text{cusp}} = e^{2\eta}, \quad (D \to B)$$
$$M_{aa}^{\max}M_{aa}^{\text{cusp}} = m_B^2 \left(1 - \frac{m_X^2}{m_B^2}\right)^2. \quad (B \to X)$$

Origin of the cusps: $a_2X_2 \leftarrow B_2 \iff D \Rightarrow B_1 \rightarrow a_1X_1$


Origin of the cusps: $a_2X_2 \leftarrow B_2 \iff D \Rightarrow B_1 \rightarrow a_1X_1$

Limiting cases (at the corners):

- Back-to-back: $(\cos \theta_1, \cos \theta_2) = (+1, +1) \iff Maximum M_{aa}$ configuration.
- Parallel: $(\cos \theta_1, \cos \theta_2) = (\pm 1, \mp 1) \Rightarrow + \Rightarrow, \quad \leftarrow + \leftarrow Zero M_{aa}$ configurations.
- Head-on: $(\cos \theta_1, \cos \theta_2) = (-1, -1) \Rightarrow + \leftarrow$ Medium M_{aa} configuration.

Origin of the cusps: $a_2X_2 \leftarrow B_2 \iff D \Rightarrow B_1 \rightarrow a_1X_1$

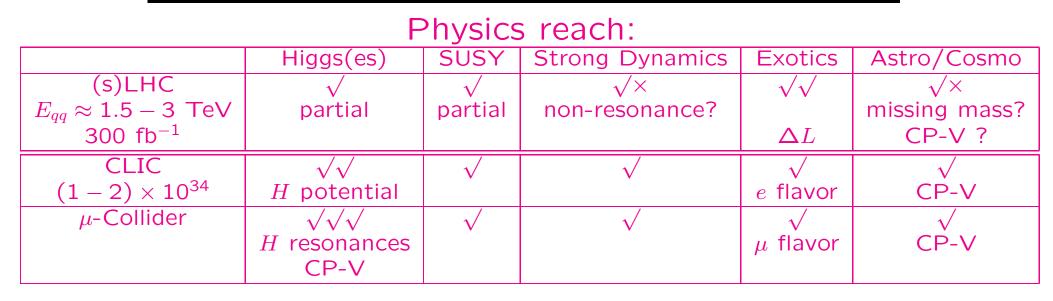
Limiting cases (at the corners):

- Back-to-back: $(\cos \theta_1, \cos \theta_2) = (+1, +1) \quad \Leftarrow + \Rightarrow$ Maximum M_{aa} configuration.
- Parallel: $(\cos \theta_1, \cos \theta_2) = (\pm 1, \mp 1) \Rightarrow + \Rightarrow, \quad \leftarrow + \leftarrow$ Zero M_{aa} configurations.
- Head-on: $(\cos \theta_1, \cos \theta_2) = (-1, -1) \Rightarrow + \leftarrow$ Medium M_{aa} configuration.
- Upon variable projection (losing info), singularities may be developed.
- It is purely kinematical, and new (rigorous singularity theorems in math).

Comparative Remarks:

Physics reach:

	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo
(s)LHC	\checkmark		$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$
$E_{qq}pprox$ 1.5 – 3 TeV 300 fb ⁻¹	$E_{qq} \approx 1.5 - 3$ TeV partial		non-resonance?		missing mass?
300 fb ⁻¹				ΔL	CP-V ?
CLIC	$\sqrt{}$	\checkmark			\checkmark
$(1-2) imes 10^{34}$	H potential			e flavor	CP-V
μ -Collider	$\sqrt{\sqrt{\sqrt{1}}}$		\checkmark	\checkmark	\checkmark
	H resonances			μ flavor	CP-V
	CP-V				


Comparative Remarks:

Physics reach:

	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo
(s)LHC	\checkmark		$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$
$E_{qq} pprox extsf{1.5} - extsf{3} extsf{TeV} \ extsf{300 fb}^{-1}$	partial	partial	non-resonance?		missing mass?
300 fb ⁻¹				ΔL	CP-V ?
CLIC	$\sqrt{}$	\checkmark	\checkmark		\checkmark
$(1-2) imes 10^{34}$	H potential			e flavor	CP-V
μ -Collider	$\sqrt{\sqrt{\sqrt{1}}}$		\checkmark	\checkmark	
	H resonances			μ flavor	CP-V
	CP-V				

The difference between (s)LHC and lepton colliders: obvious.

Comparative Remarks:

The difference between (s)LHC and lepton colliders: obvious.

The main difference between CLIC and μ C:

- 1. s-channel resonance production, especially Higgs-like.
- 2. Flavor dependent physics.

Experimentation:

	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo
(s)LHC	ECal, p_{μ}	HCal, E_T^{miss}	high $p_T \; e, \mu$		•••
	$\eta\sim$ 5, b/ au tag	b/ au tag	$b's, \ W's, \ t's$		E_T^{miss}
CLIC	b/c/ au tag	threshold scan	•••	$A_{FB,LR}$	scan
	$ heta \sim 12^\circ$	80% pol.		pol.	
μ-Collider	$R_E \sim 0.1\%$	scan?		A_{FB}	scan
	$ heta \sim 20^\circ$, pol $_T$?	pol. $_L$?		10% pol.	
μ -Collider	threshold scan				

Experimentation:

	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo	
(s)LHC	ECal, p_{μ}	HCal, E_T^{miss}	high $p_T \; e, \mu$		•••	
	$\eta\sim 5,~b/ au$ tag	b/ au tag	$b's, \ W's, \ t's$		E_T^{miss}	
CLIC	b/c/ au tag	threshold scan	•••	$A_{FB,LR}$	scan	
	$ heta \sim 12^\circ$	80% pol.		pol.		
μ -Collider	$R_E \sim 0.1\%$	scan?		A_{FB}	scan	
	$ heta \sim 20^\circ$, pol $_T$?	pol. _L ?		10% pol.		
μ -Collider	threshold scan					

The main difference between CLIC and μ C:

- CLIC: 1. beam polarization;
 - 2. low machine backgrounds
- μ C: 1. beam energy resolution;
 - 2. machine/detector backgrounds (in low E_T, p_T).

Experimentation:

	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo	
(s)LHC	ECal, p_{μ}	HCal, E_T^{miss}	high $p_T \; e, \mu$		•••	
	$\eta\sim$ 5, b/ au tag	b/ au tag	$b's, \ W's, \ t's$		E_T^{miss}	
CLIC	b/c/ au tag	threshold scan	•••	$A_{FB,LR}$	scan	
	$ heta \sim 12^\circ$	80% pol.		pol.		
μ -Collider	$R_E \sim 0.1\%$	scan?		A_{FB}	scan	
	$ heta \sim 20^\circ$, pol $_T$?	pol. $_L$?		10% pol.		
μ -Collider	threshold scan					

The main difference between CLIC and μ C:

- CLIC: 1. beam polarization;
 - 2. low machine backgrounds
- μ C: 1. beam energy resolution;
 - 2. machine/detector backgrounds (in low E_T, p_T).

BUT, seems to me that the machine backgrounds are NOT a problem for our physics signal identifications. only become a problem for precision measurements.