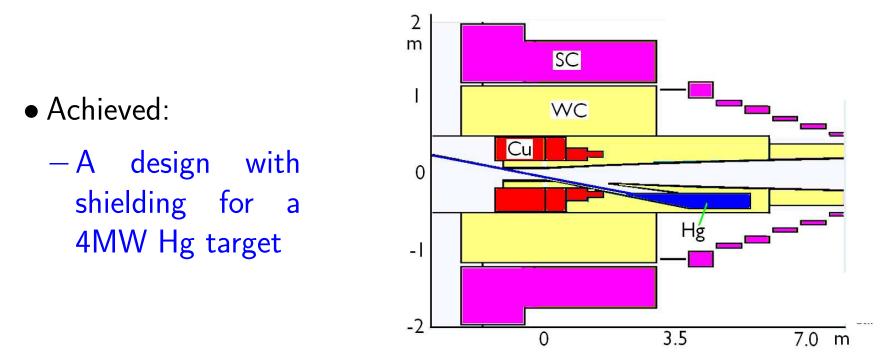


Achievements and challenges R. B. Palmer (BNL) Telluride 7/1/11 There are several punishments for making progress:


- You find new challenges
- You need to turn to new experts
- You need to expand the collaboration
- And trust that the new Director will be appointed and the needed funding will be found
- Let me go through some of our successes and challenges

1) Proton Driver and target

- Achieved: a plausible Project X upgrade for MC
- But now the hard part, including:
 - -Kicker system for Ankenbrandt's trombone
 - Target area design to allow multiple beams
 - -And lots of details

2) Target and Capture

- Task: Simulate extrapolation from MERIT to MC parameters
 - $-\,200$ Tp at 8 GeV vs 30 Tp at 24 GeV in MERIT
 - -Will Hg boiling be cause higher velocity splash ?
 - We are dependent on simulation
 - -Should we consider Pb/Bi ?

3) 6D cooling lattices

Before down-selecting, we need, for each:

- Design of tapered systems
- Define coil parameters for all stages

- especially the last one (as Rol emphasized)

- Simulations should
 - $-\,use$ input from Neuffer, or Snake
 - use fields from coils (Not ideal fields) (remember Balbakov for RFOFO)
- Integrate rf, especially for last stage

And the same goes for any final cooling scheme

Space charge and wake field questions

- Transverse space charge reduced by stronger focus
- Longitudinal space charge reduced by stronger rf
- Most serious is longitudinal SC at end of 6D
- raising frequency is best fix, but increases loading &wakes
- Simulations started with U Maryland (& LBNL ?)

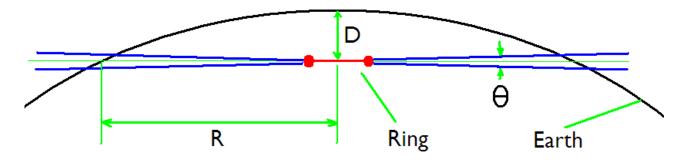
Collimation

Obviously needed, but little discussed

- Reduces detector background
- Increases luminosity/neutrino radiation
- Best done at low energies and then done again and again

Acceleration

- Transmission, transmission, transmission
- & Dilutions, dilutions, dilutions
- & Efficiency, efficiency, efficiency

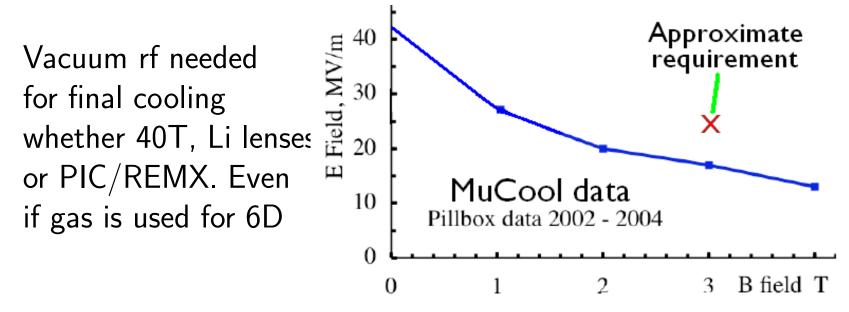

Ring design

- \bullet Congratulations Yuri and Eliana for getting 5 mm β^* at 3 TeV
- How about using triplets for 1.5 TeV ?
- Explore with MDI having small quads inside the cones

Ring Dipoles

- \bullet Congratulations Nikolai on 4 deg heat leak down 45% \rightarrow 5%
- \bullet But we need 1 %
- The two options seem to be
 - 1. shorten (to 3 m) magnets and collimate between them
 - 2. Use long magnets with continuous tungsten beam pipe

Neutrino radiation



First, we have to know to what radiation limit should be design ?

For 10% of Federal limit, 3 TeV & 125 m deep Maximum straights = 28 cm !

- Incorporate mitigation in ring designs
- Study FNAL geology for deeper locations
- Collimate at 1.1 sigma: 89% of lum., radiation/luminosity = 0.61
- Extract at 1.1 tau: 89% of lum., radiation/luminosity = 0.79

Technical challenge: rf breakdown in magnetic fields

- Theory and simulations of effect
- Fixes under study:
 - Magnetic Insulation Tried but not sufficient
 - High pressure gas Works, but not yet with beam & not for Final
 - Beryllium surfaces Some evidence, but definitive tests soon

Some safety concerns with Be but with high pressure hydrogen too

Compare with CLIC

	$\mu^+\mu^-$	$\mu^+\mu^-$		e^+e^- CLIC
C of m Energy	1.5	3	TeV	3
Luminosity	1	4	$10^{34} \text{ cm}^2 \text{sec}^{-1}$	$2^{(1)}$
Ring <bending field=""></bending>	6	8.4	Т	_
Accelerator circ./length	6	12	km	48
rms bunch height	6	4	μ m	0.001
Proton Driver power	4.	3.2	MW	_
Lepton power	7	11	MW	28
Wall power	\approx 147	pprox159	MW	560

- 3 TeV luminosity comparable or above CLIC's (for dE/E < 1%)
- 3 TeV accelerator is much smaller than CLIC's
- Spot sizes and tolerances much larger than CLIC's
- 3 TeV Wall power $\approx 1/3$ CLIC's because lepton power $\approx 1/3$ it is not magic

Conclusion 1

- Much progress in simulations
 - capture magnet, phase rotation, charge sep. & merge, 6D cooling, acceleration, tungsten shield pipe, Detector background
- Estimated Performance
 - -3 TeV Luminosity 2 times CLIC's
 - $-\,\text{Wall}$ power $\approx\,1/3$ of CLIC
- MERIT liquid mercury target experiment
 - requirements for Neutrino factory established
 - extrapolation to 20 T suggests Collider requirements also ok (see above)
- HTS testing at FNAL
- HTS testing at BNL

Conclusion 2

- Muon Test area
 - magnetic insulation tested
 - all Seasons cavity tested
 - beam to test location
 - $-\operatorname{Be}$ button test after beam tests
- MICE
 - target problem fixed
 - beam line commissioned
- \bullet Yes, we have magnet procurement problems for MICE
- Yes, rf breakdown in magnetic fields is a challenge
- Yes, space charge and rf loading must be included in the design
- \bullet Yes, neutrino radiation cannot be forgotten, even at 1.5 TeV

But, as Mike says: "if it were easy, it would already be done" and we would not be having fun

Thank you Mike

Thank you steve

