

SNS Experience with Mercury

Steven M. Trotter

June 28, 2011

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Introduction

SNS Experience with Mercury

Safety Analyses/Documentation

- Clean Air Act
- Waste Management

Source Term Development

- Grouped Elements (based on volatility)
- Source Term for Hot Cell Fire Accident Scenario
- A conservative approach envisioned a fire surrounded by a puddle of exposed mercury
- 430 kg of Hg (2.4% of total) amount vaporized

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Performance Measures

Atmospheric Transport

- US EPA Codes

- SCREEN
- ISCST3

Consequence Evaluation

- Dose Conversion Factors (DCFs)
 - Deposition/Biokinetics Respiratory Tract

- Systemic Biokinetic Model
- Activity to Dose Conversion Model

Bottom Line

- Unmitigated Scenario: 1.4 Rem MOI
- Mitigated Scenario: 66 mrem MOI
- Mitigation (Passive Structures)
 - Target Building (seismic-qualified)
 - Service Bay Walls (4 ft thick)
 - Hg Loop System (encased)
 - Service Bay Floors sloped to drain

Clean Air Act

- National Emission Standards for Hazardous Air Pollutants (NESHAPs), 40 CFR 61
- Subpart H
- National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities

- Emissions of radionuclides from DOE facilities are limited to 10 mrem/year
- EPA approved method CAP88
- Unabated/Abated Releases
- Does dose exceed 1% of standard?
- Measure all radionuclides that contribute greater than 10% of dose.

CAA

ANSI/HPS N13.1-1999

- Select Monitoring or Sampling Site
- Guidance for in-line detectors
- Radionuclides shall be collected/measured

CAA

- Permit to Construct
- Operating Permit
- Who is the regulator?

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY Performance Measures

Waste Management

 Solid wastes generated at SNS fall into three major categories:

- Low Level Waste
- Mixed Low Level Waste
- Hazardous (no rad added)

Characterization (Radioactivity)

- Calculations completed by SNS Nuclear Physics group
- CALOR96 Code System
 - 3D multimedia high energy transport code
 - Used to model nucleon-meson cascade
 - High energy physics model
- MCNP code coupled to HETC96
 - Low energy neutron transport
- ORIHET95 to study buildup and decay of activity
- These codes are state-of-the-art
- Present calculations for 5000 hr/year operation at 2 MW power level and are maximum activities
- Actual characterization calculations will use actual irradiation history of components

Characterization (Haz. Materials)

- Principal hazardous material is elemental mercury
- Some materials from the service bay will have been in contact with liquid mercury
- Generally, if these materials do not have visible mercury on them, they are considered to be RCRAfree
- If there are other materials (Cd, Pb), then they are known at the beginning of irradiation

Waste Classification Considerations

- NRC Regulations
 - Classification of Waste (Class A, B, C, GTCC, 10 CFR 61.55)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Performance Measures

DOT Regulations

 Classification of Shipment

- Assembly of type 316 stainless steel vessels suspended from a flange
- Inner vessel for containing the target mercury
- Outer vessel used for containing any mercury that may leak from the inner vessel

- Estimated lifetime 52 days; 4 operating periods per year
- Total weight (without mercury) is 1527 lb

- Module is removed from service according to the following procedure:
 - Drain mercury from the process loop
 - Retract the target carriage to the maintenance position in the hot cell
 - Install the shield boot over the end of the module
 - Tilt module to drain more fluids (including mercury) from the module
 - Lift the module off its carriage (nose-down vertical position)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Performance Measures

Move to shielded, ventilated container in the hot cell

- Characterization
 - Draining and sectioning
 - <3% by weight of mercury remains</p>
 - Container-like equipment < 110 gal volume
 - RCRA empty; manage as solid waste
- Modules will be studied for a period of time (PIE)

- This involves sectioning of the steel
- Ensures complete mercury drainage

Target Module Waste Analysis for Class A Waste

	Half Life	Class A Limit					-					
Isotope	(s)	Ci/m3	0	ly	3y	5y	бу	7y	8y	9y	10y	lly
H3	3.89E+08	40	1.32E+01	1.25E+01	1.11E+01	9.96E+00	9.41E+00	8.90E+00	8.41E+00	7.95E+00	7.52E+00	7.11E+00
Co60 Ni63	1.66E+08	700	8.72E+00	7.65E+00	5.88E+00	4.52E+00	3.96E+00	3.47E+00	3.05E+00	2.67E+00	2.34E+00	2.05E+00
(act metal) Ni59	3.16E+09	35	5.10E+00	5.07E+00	5.00E+00	4.93E+00	4.90E+00	4.86E+00	4.83E+00	4.80E+00	4.76E+00	4.73E+00
(act metal)	2.37E+12	2.20E+01	4.49E-02	4.49E-02	4.49E-02	4.49E-02	4.49E-02	4.49E-02	4.49E-02	4.49E-02	4.49E-02	4.49E-02
Tc99	6.66E+12	3.00E-01	1.30E-03	1.41E-03	1.41E-03	1.41E-03	1.41E-03	1.41E-03	1.41E-03	1.41E-03	1.41E-03	1.41E-03
Sr90 Nb94	8.88E+08	4.00E-02	1.10E-03	1.08E-03	1.02E-03	9.75E-04	9.52E-04	9.28E-04	9.06E-04	8.84E-04	8.62E-04	8.41E-04
(act metal) C14	6.41E+11	2.00E-02	5.65E-04	5.65E-04	5.65E-04	5.65E-04	5.65E-04	5.65E-04	5.65E-04	5.65E-04	5.65E-04	5.65E-04
(act metal) All	1.81E+11	8.00E+00	1.73E-05	1.73E-05	1.73E-05	1.73E-05	1.73E-05	1.73E-05	1.73E-05	1.73E-05	1.73E-05	1.73E-05
Activity		7.00E+02	8.72E+04	2.25E+03	8.13E+02	<mark>4.05E+02</mark>	3.03E+02	2.32E+02	1.80E+02	1.41E+02	1.12E+02	8.92E+01
Sum of the i	fractions		5.50E-01	5.29E-01	4.90E-01	4.56E-01	4.40E-01	4.25E-01	4.10E-01	3.97E-01	3.84E-01	3.72E-01

Decay Period

In accordance with 10CFR61.55 the Target module is classified as a class A waste if classified by long lived radionuclide, but is a class B waste initially if classified by short lived radionuclides. Analysis shows that the target module is a class A waste after 5 years decay

21

Target Module Packaging

JT-BATTELLE

Target Disposition Operations

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY Performance Measures

23

Target Disposition

Spent Adsorbers

- Carbon Adsorbers
- Gold Adsorbers

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY Performance Measures

Gold Adsorber

- Al₂O₃ pellets containing a gold impregnant
- Sized for mercury that would exit into the off-gas during operational period
 - preliminary estimate is two target cycles per year
- Two gold adsorbers
 - one located in the target service bay
 - one in the MOTS
- Contains ~110 g of mercury when it is spent
 - calculated using the mercury weight and the specific activity of the mercury based upon the known irradiation history

Gold Adsorber in Target Service Bay

Gold Adsorber

Spent Gold Adsorber Activity Inventory*

Isotope		Half life (s)	shutdown-	+30 min	Ci/Adsorber	r (30 m)	Ci/Adsorber (90 d)	
			(Ci/1 cu m)	(Ci/g Hg)	(Ci)	Ci/m3	90 d decay	Ci/m3
Hg	187	1.44E+02	0.285	2.11E-08	2.31E-06	1.29E-04	0.00E+00	0.00E+00
Hg	188	1.95E+02	5.46	4.04E-07	4.43E-05	2.46E-03	0.00E+00	0.00E+00
Hg	189	4.56E+02	277	2.05E-05	2.25E-03	1.25E-01	0.00E+00	0.00E+00
Hg	190	1.20E+03	2650	1.96E-04	2.15E-02	1.20E+00	0.00E+00	0.00E+00
Hg	191	2.90E+03	6000	4.44E-04	4.87E-02	2.71E+00	0.00E+00	0.00E+00
Hg	192	1.75E+04	8900	6.59E-04	7.22E-02	4.01E+00	1.25E-135	6.97E-134
Hg	193	1.37E+04	15200	1.13E-03	1.23E-01	6.86E+00	1.70E-172	9.42E-171
Hg	193*	4.25E+04	120	8.89E-06	9.74E-04	5.41E-02	8.14E-59	4.52E-57
Hg	194	1.64E+10	709	5.25E-05	5.75E-03	3.20E-01	5.75E-03	3.20E-01
Hg	195	3.56E+04	33300	2.47E-03	2.70E-01	1.50E+01	4.77E-67	2.65E-65
Hg	195*	1.50E+05	1210	8.96E-05	9.82E-03	5.46E-01	2.44E-18	1.35E-16
Hg	197	2.31E+05	115000	8.52E-03	9.33E-01	5.19E+01	6.87E-11	3.82E-09
Hg	197*	8.57E+04	18100	1.34E-03	1.47E-01	8.16E+00	7.13E-29	3.96E-27
Hg	199*	2.56E+03	70400	5.21E-03	5.71E-01	3.18E+01	0.00E+00	0.00E+00
Hg	203	4.03E+06	179000	1.33E-02	1.45E+00	8.07E+01	3.81E-01	2.12E+01
Hg	205	3.12E+02	60.1	4.45E-06	4.88E-04	2.71E-02	0.00E+00	0.00E+00
					Total	2.03E+02	3.87E-01	2.15E+01

Spent gold adsorber is a class A waste immediately upon generation. Since the mercury in the adsorber may only be deposited by evaporation, no spallation product isotopes present; and only mercury isotopes included.

Packaging

- Removed from the installed position and capped.
- Inserted into a 85-gal drum with other in-cell materials
- Drum is inserted in the TN-RAM liner and removed from the hot cell through the bottom loading port

Carbon Adsorbers

- Sulfur impregnated charcoal
 Nucon Mersorb 1.5 mm
- 1750 lb weight (total)
- Mercury content is about 2 kg
- measured by mercury content of air stream and flowrate
- Also measured by monitoring surface dose
 - Surface dose is <200 mrem/h
 - Known specific activity yields mercury content

U.S. DEP

OAK RIDGE NATIONAL LABORATORY

Performance Measures

ARTMENT OF ENERGY

Dose Rate Buildup on Carbon Adsorbers

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY Performance Measures

Misc Service Bay Wastes

- How much mercury is possible to have in an 85-gal drum before a class A limit is exceeded?
- ~79 g Hg (40 year irradiation basis)
- in an 85 gal drum
- No visible mercury policy should eliminate exceeding this quantity

		ClassA						
	Value	Limit	Fraction					
C-14	9.35E-03	8.00E-01	1.17E-02					
Ni-59	5.71E-03	2.20E+01	2.60E-04					
Nb-94	5.79E-02	2.00E-02	2.89E+00	Class C, <2	2E-1			
Tc-99	1.13E-02	3.00E-01	3.77E-02					
1-129	1.62E-05	8.00E-03	2.02E-03					
Alpha emit	ters with ha	lf life >5 yea	ars					
	1.37E-03	Ci/m3						
	1.01E-01	1.00E+02	nCi/g					
Pu-241	1.18E+00	3.50E+03	nCi/g					
Cm-242	6.74E-02	2.00E+04	nCi/g					
H-3	5.54E+04	4.00E+01	1.38E+03					
Co-60	4.56E+01	7.00E+02	6.51E-02					
Ni-63	1.77E+01	3.50E+00	5.05E+00					
Sr-90	2.20E+01	4.00E-02	5.49E+02					
Cs-137	5.83E-01	1.00E+00	5.83E-01					
Nuclides w	ith half life <	< 5 years						
	2.66E+04	Ci/m3	7.00E+03					
In an	85	gal contain	er =	0.32	m3			
In an	85 When is th	gal contain e waste clas	er = ss A?	0.32	m3			
In an	85 When is th E.g, what a	gal contain e waste clas activity is pe	er = ss A? rmitted befo	0.32 ore Class A	m3 is exceeded			
In an	85 When is th E.g. what a Ci/m3	gal contain e waste clas ctivity is pe Ci/package	er = ss A? rmitted befo ? [*]	0.32 ore Class A m3 Hg	m3 is exceeded kg Hg			
In an C-14	85 When is th E.g. what a Ci/m3 8.00E-01	gal contain e waste clas ctivity is pe Ci/package 2.57E-03	er = ss A? rmitted befo e ^x	0.32 ore Class A m3 Hg 2.75E-01	m3 is exceeded kg Hg 3.72E+03			
In an C-14 Ni-59	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01	gal contain e waste clas ctivity is pe Ci/package 2.57E-03 7.08E-02	er = ss A? rmitted befo	0.32 me Class A m3 Hg 2.75E-01 1.24E+01	m3 is exceeded kg Hg 3.72E+03 1.67E+05			
In an C-14 Ni-59 Nb-94	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05	er = ss A? rmitted befo	0.32 ore Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01			
In an C-14 Ni-59 Nb-94 Tc-99	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04	er = ss A? rmitted befo	0.32 me Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03			
In an C-14 Ni-59 Nb-94 Tc-99 I-129	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05	er = ss A? rmitted befo	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04			
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 If life >5 yea	er = ss A? rmitted befo e ^x	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04			
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 tters with ha 1.00E+02	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 If life >5 yea nCi/g	er = ss A? rmitted befo e*	0.32 re Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04			
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 tters with ha 1.00E+02 4.00E+01	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 If life >5 yea nCi/g 1.29E-01	er = ss A? rmitted befo e [*]	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02	> Class A		
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-60	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02	gal contain e waste clas octivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 if life >5 yea nCi/g 1.29E-01 2.25E+00	er = ss A? rmitted befo e ^s	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02	> Class A		
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-60 Ni-63	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02 3.50E+00	gal contain e waste clas octivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 6 life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02	er = ss A? rmitted befo	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00	> Class A		
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-60 Ni-63 Sr-90	85 When is th E.g, what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02 3.50E+00 4.00E-02	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 if life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02 1.29E-04	er = ss A? rmitted befo	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04 5.86E-06	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00 7.91E-02	> Class A 79.1	g hg per pa	
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-60 Ni-63 Sr-90 Cs-137	85 When is th E.g, what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02 3.50E+00 4.00E-02 1.00E+00	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 If life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02 1.29E-04 3.22E-03	er = ss A? rmitted befo	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04 5.86E-06 5.51E-03	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00 7.91E-02 7.45E+01	> Class A 79.1	g hg per pa	
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-60 Ni-63 Sr-90 Cs-137 Nuclides w	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02 3.50E+00 4.00E-02 1.00E+00 ith half life	gal contain e waste clas octivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 if life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02 1.29E-04 3.22E-03 < 5 years	er = ss A? rmitted befo	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04 5.86E-06 5.51E-03	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00 7.91E-02 7.45E+01	> Class A 79.1	g hg per pa	ackage
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-80 Ni-83 Sr-90 Cs-137 Nuclides w	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02 3.50E+00 4.00E-02 1.00E+00 vith half life 7.00E+03	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 if life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02 1.29E-04 3.22E-03 < 5 years 2.25E+01	er = ss A? rmitted befo	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04 5.86E-06 5.51E-03 8.46E-04	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00 7.91E-02 7.45E+01 1.14E+01	> Class A 79.1	g hg per pa	ackage
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-80 Ni-83 Sr-90 Cs-137 Nuclides w	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02 1.00E+00 ith half life 4 7.00E+03	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 If life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02 1.29E-04 3.22E-03 < 5 years 2.25E+01	er = ss A? rmitted befo	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04 5.80E-06 5.51E-03 8.46E-04	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00 7.91E-02 7.45E+01 1.14E+01	> Class A 79.1	g hg per pa	
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-60 Ni-63 Sr-90 Cs-137 Nuclides w	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 ters with ha 1.00E+02 4.00E+01 7.00E+02 1.00E+00 4.00E+00 0.00E+03	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 if life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02 1.29E-04 3.22E-03 < 5 years 2.25E+01 * to approa	er = ss A? rmitted befo e*	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04 5.80E-06 5.51E-03 8.46E-04 e limit	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00 7.91E-02 7.45E+01 1.14E+01	> Class A 79.1	g hg per pa	
In an C-14 Ni-59 Nb-94 Tc-99 I-129 Alpha emit H-3 Co-60 Ni-63 Sr-90 Cs-137 Nuclides w	85 When is th E.g. what a Ci/m3 8.00E-01 2.20E+01 2.00E-02 3.00E-01 8.00E-03 tters with ha 1.00E+02 4.00E+01 7.00E+02 3.50E+00 4.00E+02 1.00E+03 vith half life < 7.00E+03	gal contain e waste clas ctivity is pe 2.57E-03 7.08E-02 6.43E-05 9.65E-04 2.57E-05 if life >5 yea nCi/g 1.29E-01 2.25E+00 1.13E-02 1.29E-04 3.22E-03 < 5 years 2.25E+01 * to approa	er = ss A? rmitted befo e* ars ars ch 1% of th 1.61E-02	0.32 pre Class A m3 Hg 2.75E-01 1.24E+01 1.11E-03 8.54E-02 1.59E+00 2.32E-06 4.94E-02 6.37E-04 5.86E-06 5.51E-03 8.46E-04 e limit	m3 is exceeded kg Hg 3.72E+03 1.67E+05 1.50E+01 1.15E+03 2.14E+04 3.14E-02 6.67E+02 8.60E+00 7.91E-02 7.45E+01 1.14E+01	> Class A 79.1	g hg per pa	

All Hg together is a Class C waste

Class A limit for Sr-90 is exceeded at 79.1 g Hg

Conclusion

Science should drive selection of target!

 In the U.S., should mercury be selected as the target of choice, there is a path forward through the myriad regulations.

