

Existing Simulation Tools & Needs

Richard Fernow Brookhaven National Laboratory

Muon Collider Workshop Telluride, Colorado 30 June 2011

Outline

- brief survey of some common Design & Simulation codes for MC
- mention some of our anticipated computing challenges
- describe main cooling simulation codes in a little more detail
- mention a possible problem with space charge in cooling channel

Existing tools – Proton Driver

Codes

- MAD
- Optim
- Parmila
- TRACE3D
- ESME

beam optics & lattice design beam optics & lattice design beam dynamics in linacs beam envelope including linear space charge multiparticle longitudinal dynamics in rings

Existing tools - Target

Codes

- MARS, Fluka
- Frontier, SPH
- Fluent, Aeroflo
- custom codes

particle production, shielding design magnetohydrodyamics of Hg jets fluid dynamics of Hg delivery system design of capture solenoid magnets

Issues

- detailed jet dynamics, distortions in field
- energy deposition in superconducting magnets

Existing tools - Front end & Cooling

Codes

- ICOOL
- G4beamline
- Ecalc9
- MARS

channel design & optimize performance channel design & performance, visualization standard emittance calculation shielding design for channel

Issues

- these are novel types of channels => codes development is required
- are all the important physics processes for cooling included?
- shielding channel from high radiation levels downstream of target region
- space charge effects near end of cooling channel

Existing tools – Muon acceleration

Codes

• Optim

• Synch

• GPT, ZGOUBI

• G4beamline

- ORBIT
- custom codes

RLA design RCS lattice design particle tracking tracking, energy deposition collective effects use FFAG code for RCS design

Issues

• efficient determination of multi-turn energy loss from muon decays

• High Performance Computing (HPC) is likely useful here

Existing tools – Collider ring

Codes	
• MAD	lattice design, dynamic aperture
• COSY	dynamic aperture with fringe fields
• BeamBeam3D	beam-beam with transverse wakefields
• SBBE	beam-beam simulations
• ORBIT	self-consistent simulation of longitudinal dynamics,
	beam loading
• MARS	heat deposition, material lifetimes, radiation levels in magnets

Issues

• beam-beam and self-consistent simulations require considerable HPC resources

• upgrade of MADX-PTC needed to include fringe fields of magnets

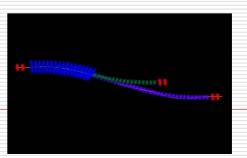
Existing tools – MDI

Codes	
• MARS15	backgrounds in detector, heat deposition,
	material lifetimes, radiation levels in IR
• PYTHIA	event generator for background studies
 ILCroot 	sub-detector responses to background & physics signals
• GUINEA-PIG	simulate beam-beam effects at IP, e.g. incoherent e ⁺ e ⁻ pairs

Issues

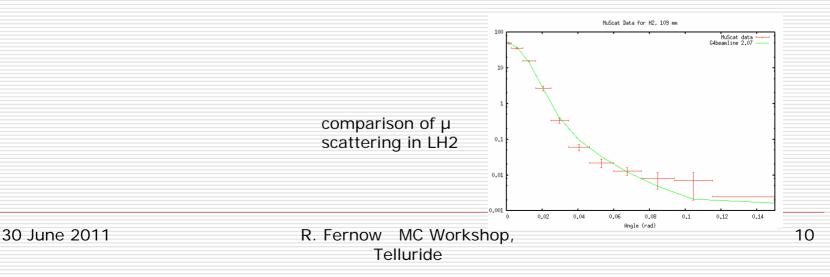

• MARS15 & ILCroot are under continuous development

• enormous numbers of particles requires HPC resources


G4beamline

- user-friendly interface to Geant4 code system (Tom Roberts)
- allows rapid evaluation of beamline designs
- many predefined beamline elements
- includes physics for interactions in matter
- provides detailed visualization of tracks and element locations: warning about overlaps, observe where particles get lost automatic tuning of many parameters
- can sample beam at any location with "virtual detectors"
- has detailed Users Guide
- support for parallel processing on multiple CPUs
- includes HistoRoot program for easy generation of plots and histograms

R. Fernow MC Workshop, Telluride



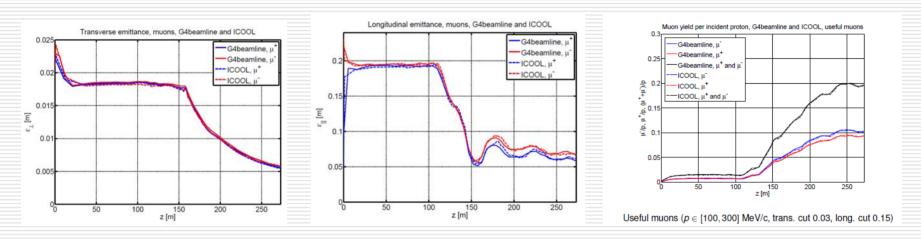
6D cooling channel

Code validation

- validating the accuracy of simulation codes is obviously important
- G4beamline has undergone fairly detailed validation
- particle interactions checked by large Geant4 physics community
- automated test suite is used to check code performance (Tom Roberts) e.g. tracking, scattering, energy loss, field configurations
- detailed validation documentation is available
- MuScat experiment provided data for muon scattering validation
- in future MICE results should provide valuable additional tests for code

ICOOL & Ecalc9

ICOOL


- older (~1996) Fortran code
- Runge-Kutta tracking in space using accelerator coordinate system
- build channels similar to the TRANSPORT code
- many methods provided for specifying fields analytic models, expansions using on-axis fields, field grids
- graphics are very primitive (no warning about overlapping objects)
- many auxiliary codes available for manipulating/analyzing output

ECALC9 (Gregg Penn)

- has been the standard MC emittance calculation program since ~2000
- currently studying replacement using canonical variables & eigen-emittances

Code comparison

• G4beamline & ICOOL simulations of identical channels typically agree <10%

(Pavel Snopok, IDS-NF front end channel)

Space charge effects in cooling

- analytic calculations of space charge tune shift indicate possible trouble near end of 6D cooling - start of final cooling (R. Palmer)
- ICOOL has a uniformly-charged ellipsoid model, varying shape from rms, generates momentum kicks at start and end of every region (RCF & Juan Gallardo)
- ICOOL simulations show significant emittance growth for our parameters
- next steps:
 - 1) adjust channel design parameters to decrease calculated tune shift (R. Palmer)
 - 2) opportunity to compare with new space charge features in G4beamline
 - allows time stepping of macroparticles in parallel (Tom Roberts)
 - a) Lienard-Wiechert model for fields in LAB frame
 - b) solves Poisson equation on grid in BUNCH frame with ∞ BC
 - 3) started study of space charge effects in 6D cooling using WARP (BNL, UMd, LLNL)
 - 4) eventually need to include effects of wakefields & use actual BC

Summary

- existing codes are satisfactory for most of our present MC simulations
- we are becoming aware of some issues that could use more HPC resources:
- 1. Hg jet interactions for MC beam parameters
- 2. interaction of intense muon bunches in absorbers
- 3. space charge effects near end of cooling
- 4. multi-turn energy loss from μ decays in accelerator
- 5. beam-beam interactions in collider ring

6. reducing backgrounds on physics detectors

- (K. Paul) (R. Ryne)
- (R. Ryne)