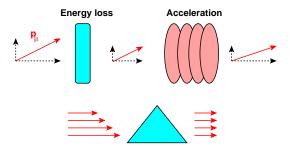
Recent MTA Results

Yağmur Torun

Illinois Institute of Technology/Fermilab


Muon Collider 2011 June 29, 2011 – Telluride

Yağmur Torun MTA Update – Muon Collider 2011 – 6/29/11

The only muon cooling scheme that appears practical within the muon lifetime (2.2 μ s).

Mainly transverse; longitudinal cooling requires momentum-dependent path-length through the energy absorbers

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \ (\varepsilon - \varepsilon_0), \ \ \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \ \frac{\beta_\perp}{\beta}$$

 ε_0 : equilibrium emittance (multiple scattering \sim cooling)

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake), ___,

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \; (\varepsilon - \varepsilon_0), \; \; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \; \frac{\beta_{\perp}}{\beta}$$

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake), ___,

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \; (\varepsilon - \varepsilon_0), \; \; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \; \frac{\beta_{\perp}}{\beta}$$

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake), ___,

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \; (\varepsilon - \varepsilon_0), \; \; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \; \frac{\beta_{\perp}}{\beta}$$

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake), ___,

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \ (\varepsilon - \varepsilon_0), \ \ \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \ \frac{\beta_{\perp}}{\beta}$$

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake), ___,

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \; (\varepsilon - \varepsilon_0), \; \; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \; \frac{\beta_{\perp}}{\beta}$$

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake),

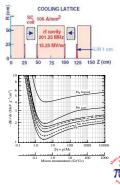
Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \; (\varepsilon - \varepsilon_0), \; \; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$

 $\varepsilon_{\rm 0}:$ equilibrium emittance (multiple scattering \sim cooling) Efficient cooling requires:

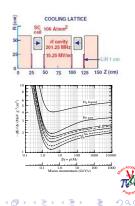
- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake), ____

Yağmur Torun



Normalized transverse emittance ε of muon beam in solenoidal channel

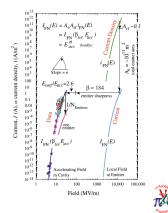
$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \ (\varepsilon - \varepsilon_0), \ \ \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \ \frac{\beta_\perp}{\beta}$$


- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake), _____,

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \; (\varepsilon - \varepsilon_0), \; \; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$

- Energy absorbers with large dE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- Iow muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)


Field emission

- Electrons tunneling through work function φ at metal surface due to the rf electric field E
- Enhanced by sharp features on the surface: $E_s = \beta_s E$
- Described by the Fowler-Nordheim current density j

$$j(E) = \frac{A}{\phi} E_s^2 \exp\left(-\frac{B \phi^{3/2}}{E_s}\right)$$

• Steep dependence in E

$$j \sim E^m \rightarrow m = rac{E}{j} rac{\partial j}{\partial E} \simeq 2 + rac{67.4 \text{ GV/m}}{E_s}$$

- External magnetic fields can significantly modify the performance of rf cavities by changing the dynamics of electrons coming off the surface at field emission sites (including any plasma cloud that might form near the surface)
- When $\vec{B}_{ext} \parallel \vec{E}_{rf}$, electrons can ride magnetic field lines between the accelerating gap and cause damage due to the focused current density
- When $\vec{B}_{ext} \perp \vec{E}_{rf}$, electrons can be deflected into grazing angles to the surface before being accelerated
- Must develop understanding to mitigate problem in cooling channel designs (where normally $\vec{B}_{ext} \sim \parallel \vec{E}_{rf}$)
- Need to study effect experimentally as a function of angle between fields (including $\vec{B}_{\text{ext}} \perp \vec{E}_{\text{rf}}$)

ヘロト ヘワト ヘビト ヘビト

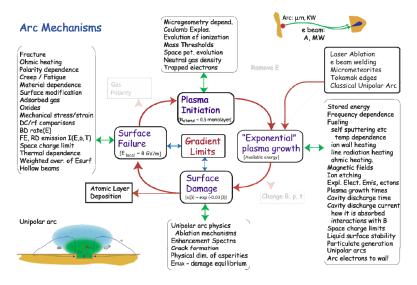
- External magnetic fields can significantly modify the performance of rf cavities by changing the dynamics of electrons coming off the surface at field emission sites (including any plasma cloud that might form near the surface)
- When $\vec{B}_{ext} \parallel \vec{E}_{rf}$, electrons can ride magnetic field lines between the accelerating gap and cause damage due to the focused current density
- When $\vec{B}_{ext} \perp \vec{E}_{rf}$, electrons can be deflected into grazing angles to the surface before being accelerated
- Must develop understanding to mitigate problem in cooling channel designs (where normally $\vec{B}_{ext} \sim \parallel \vec{E}_{rf}$)
- Need to study effect experimentally as a function of angle between fields (including $\vec{B}_{\text{ext}} \perp \vec{E}_{\text{rf}}$)

・ロト ・ 同ト ・ ヨト ・ ヨト

- External magnetic fields can significantly modify the performance of rf cavities by changing the dynamics of electrons coming off the surface at field emission sites (including any plasma cloud that might form near the surface)
- When $\vec{B}_{ext} \parallel \vec{E}_{rf}$, electrons can ride magnetic field lines between the accelerating gap and cause damage due to the focused current density
- When $\vec{B}_{ext} \perp \vec{E}_{rf}$, electrons can be deflected into grazing angles to the surface before being accelerated
- Must develop understanding to mitigate problem in cooling channel designs (where normally $\vec{B}_{ext} \sim \parallel \vec{E}_{rf}$)
- Need to study effect experimentally as a function of angle between fields (including $\vec{B}_{\text{ext}} \perp \vec{E}_{\text{rf}}$)

ヘロト ヘワト ヘビト ヘビト

- External magnetic fields can significantly modify the performance of rf cavities by changing the dynamics of electrons coming off the surface at field emission sites (including any plasma cloud that might form near the surface)
- When $\vec{B}_{ext} \parallel \vec{E}_{rf}$, electrons can ride magnetic field lines between the accelerating gap and cause damage due to the focused current density
- When $\vec{B}_{ext} \perp \vec{E}_{rf}$, electrons can be deflected into grazing angles to the surface before being accelerated
- Must develop understanding to mitigate problem in cooling channel designs (where normally B
 _{ext} ∼ || E
 _{rf})
- Need to study effect experimentally as a function of angle between fields (including $\vec{B}_{\text{ext}} \perp \vec{E}_{\text{rf}}$)



ロトス値とスモトメモト

- External magnetic fields can significantly modify the performance of rf cavities by changing the dynamics of electrons coming off the surface at field emission sites (including any plasma cloud that might form near the surface)
- When $\vec{B}_{ext} \parallel \vec{E}_{rf}$, electrons can ride magnetic field lines between the accelerating gap and cause damage due to the focused current density
- When $\vec{B}_{ext} \perp \vec{E}_{rf}$, electrons can be deflected into grazing angles to the surface before being accelerated
- Must develop understanding to mitigate problem in cooling channel designs (where normally \$\vec{B}_{ext} ~ || \$\vec{E}_{rf}\$)
- Need to study effect experimentally as a function of angle between fields (including $\vec{B}_{ext} \perp \vec{E}_{rf}$)

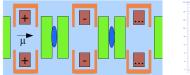
One way to look at it (Norem)

Yağmur Torun MTA Update – Muon Collider 2011 – 6/29/11

イロト イポト イヨト イヨト

- Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
- Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)
- Magnetic shielding: at cavity locations (Rogers)

reduced cooling performance

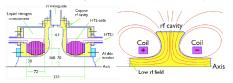

- Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
- Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)
- Magnetic shielding: at cavity locations (Rogers)

reduced cooling performance

Potential Solutions

- Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
- Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)
- Magnetic shielding: at cavity locations (Rogers)

reduced cooling performance

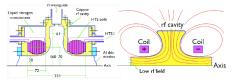


RF

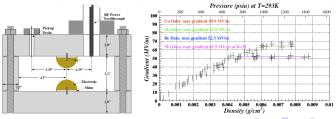
Coil

Potential Solutions

 Magnetic insulation: modified cavity/coil designs to keep B⊥E on cavity surfaces (Palmer)


Loss of x 2 gradient advantage in pillbox geometry

 High-pressure gas: suppress breakdown by moderating electrons (Muons Inc.) – need beam test (Yonehara)


Potential Solutions

 Magnetic insulation: modified cavity/coil designs to keep B⊥E on cavity surfaces (Palmer)

Loss of x 2 gradient advantage in pillbox geometry

 High-pressure gas: suppress breakdown by moderating electrons (Muons Inc.) – need beam test (Yonehara)

Yağmur Torun MTA Update – Muon Collider 2011 – 6/29/11

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - RF cavities
 - Magnets
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests

Mission

• design, prototype and test components for ionization cooling

- Energy absorbers
- RF cavities
- Magnets
- Diagnostics
- including associated simulation and theoretical studies
- support system tests

くロト (過) (目) (日)

Mission

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - RF cavities
 - MagnetsDiagnostics
- including associated simulation and theoretical studies
- support system tests

ヘロト 人間 ト ヘヨト ヘヨト

Mission

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - RF cavities
 - MagnetsDiagnostics
- including associated simulation and theoretical studies
- support system tests

くロト (過) (目) (日)

Mission

- design, prototype and test components for ionization cooling
 - Energy absorbers
 - RF cavities
 - Magnets
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests

프 🖌 🛪 프 🕨

Mission

- design, prototype and test components for ionization cooling
 - Energy absorbers (LH2, solid LiH)
 - RF cavities
 - Magnets
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests

< ∃→

- design, prototype and test components for ionization cooling
 - Energy absorbers (LH2, solid LiH)
 - RF cavities : 201 MHz pillbox MICE prototype, 805 MHz program for systematic studies of dark current and magnetic field effects (vacuum and gas-pressurized)
 - Magnets
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests

- design, prototype and test components for ionization cooling
 - Energy absorbers (LH2, solid LiH)
 - RF cavities : 201 MHz pillbox MICE prototype, 805 MHz program for systematic studies of dark current and magnetic field effects (vacuum and gas-pressurized)
 - Magnets : 2-coil solenoid, larger one under construction)
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests

- design, prototype and test components for ionization cooling
 - Energy absorbers (LH2, solid LiH)
 - RF cavities : 201 MHz pillbox MICE prototype, 805 MHz program for systematic studies of dark current and magnetic field effects (vacuum and gas-pressurized)
 - Magnets : 2-coil solenoid, larger one under construction)
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests (MICE, future cooling experiments)

Mission

- design, prototype and test components for ionization cooling
 - Energy absorbers (LH2, solid LiH)
 - RF cavities : 201 MHz pillbox MICE prototype, 805 MHz program for systematic studies of dark current and magnetic field effects (vacuum and gas-pressurized)
 - Magnets : 2-coil solenoid, larger one under construction)
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests (MICE, future cooling experiments)

MuCool now folded into Muon Accelerator Program.

Mission

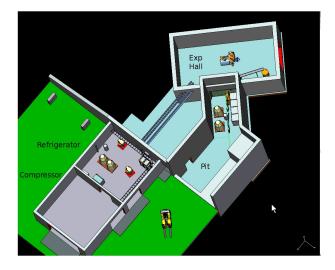
- design, prototype and test components for ionization cooling
 - Energy absorbers (LH2, solid LiH)
 - RF cavities : 201 MHz pillbox MICE prototype, 805 MHz program for systematic studies of dark current and magnetic field effects (vacuum and gas-pressurized)
 - Magnets : 2-coil solenoid, larger one under construction)
 - Diagnostics
- including associated simulation and theoretical studies
- support system tests (MICE, future cooling experiments)

MuCool now folded into Muon Accelerator Program.

Current focus is on RF in magnetic field.

MuCool Test Area (MTA) - http://mice.iit.edu/mta/

Dedicated facility at the end of the Linac built to address MuCool needs

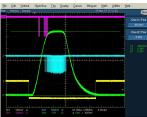


- RF power (13 MW at 805 MHz, 4.5 MW at 201 MHz)
- Superconducting magnet (5 T solenoid)
- Large coupling coil under construction
- 805 and 201 MHz cavities
- Radiation detectors
- Cryogenic plant
- 400 MeV p beamline

MuCool Test Area (MTA)

토 🛌 🗄

・ロト ・ 一下・ ・ ヨト・

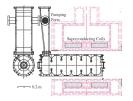

MuCool Test Area (MTA)

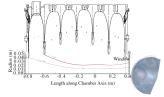
Experimental Hall

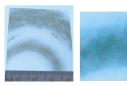
Beamline

X-rays at high gradient

Compressor Room

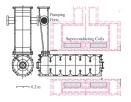


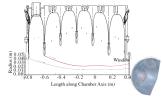

프 🕨 🗉 프

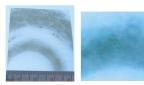

It all started with ..

 Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field

- strong dark current soaking up all rf power beyond 55 MV/m surface field
- field emission beamlets focused by magnetic field (enough to drill holes in windows)

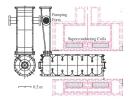


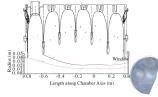


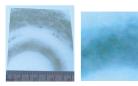


It all started with ..

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)

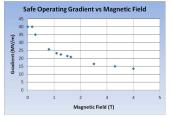


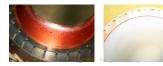




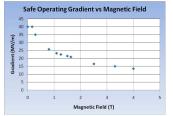
It all started with ..

- Initial studies with 6-cell 805 MHz cavity hinted at limits of Cu surface and effect of magnetic field
 - strong dark current soaking up all rf power beyond 55 MV/m surface field
 - field emission beamlets focused by magnetic field (enough to drill holes in windows)

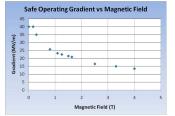


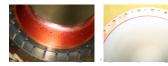


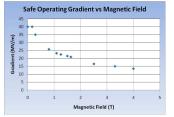
805 MHz pillbox cavity used to

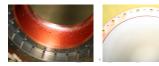

- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
- test buttons with different materials/coatings
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"

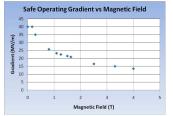
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"



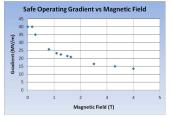


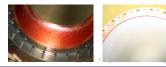

- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows
 - test buttons with different materials/coatings
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"



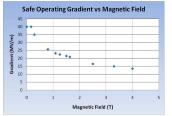

- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"

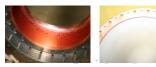
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
- Back after rebuild at JLab, tested again

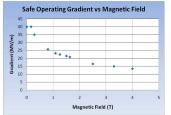


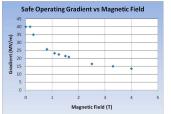


MTA Update - Muon Collider 2011 - 6/29/11 Yağmur Torun

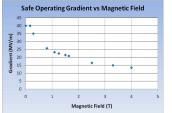

- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"

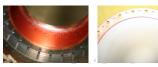



- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"


- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"

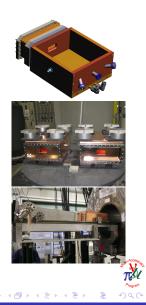
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings Cu still weak link – Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)

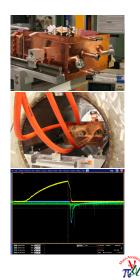




MTA Update - Muon Collider 2011 - 6/29/11 Yağmur Torun

- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Window slice inspection in progress (Bowring)
- To be tested with Be buttons "soon"




Box Cavity (Moretti)

- Rectangular geometry chosen for test cavity to allow fast fabrication and simplify analysis
- Interior dimensions: 276.5 x 250 x 123.8 mm
- Made of 101 OFE copper plates
- Attached in two hydrogen brazing cycles
- Support system designed to rotate cavity pivoting around magnet center by up to 12°
- Rectangular coupling aperture with rounded edges and a coupling cell built to match the power coupler to waveguide
- Three CF flange tubes for rf pickups and optical diagnostics
- $f_0 = 805.341$ MHz, $Q_0 = 27.9 \times 10^3$, coupling factor 0.97

Box Cavity

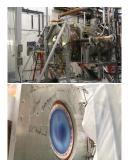
- Operated in the MTA magnet Mar-Sep 2010
- Automated control program, optical diagnostics
- Commissioned to 49MV/m at B=0
- Took data at 0, \pm 1, 3, 4^o wrt B axis (3T)
- Large effect seen at 3-4^o (stable gradient down to about 25MV/m)
- Some degradation even at 1^o
- Visual inspection of interior, no obvious damage
- RF, optical and X-ray signals during sparks saved for analysis

201 MHz MICE prototype cavity

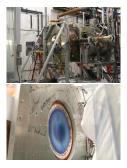
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior

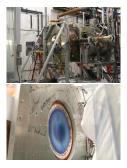
< 🗇 🕨

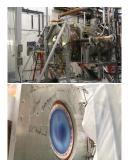
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior

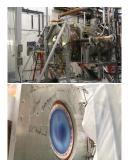


- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior



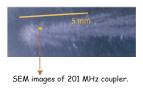

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior

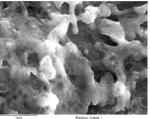

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior


- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior

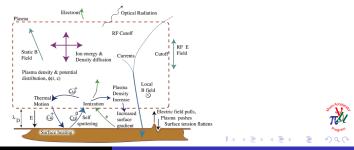
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior





- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior


Evidence for some sparking in the coupler

Electron mag

Unipolar arc?

modular pillbox with replacable end walls

- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- Iooking into Be walls

- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- Iooking into Be walls

- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- Iooking into Be walls

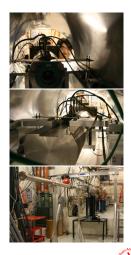
- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- Iooking into Be walls

- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- Iooking into Be walls



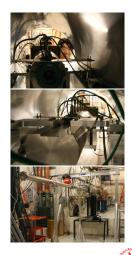
- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- Iooking into Be walls

HPRF cavity beam test (Yonehara)


- First beam experiment at MTA
- Currently our highest priority
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)

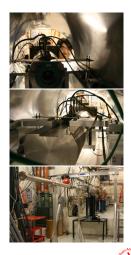
イロト イポト イヨト イヨト

HPRF cavity beam test (Yonehara)

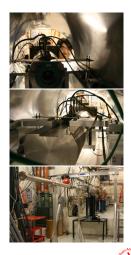

- First beam experiment at MTA
- Currently our highest priority
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)

ヘロト ヘアト ヘビト ヘ

HPRF cavity beam test (Yonehara)


- First beam experiment at MTA
- Currently our highest priority expected to run within the next few weeks
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)

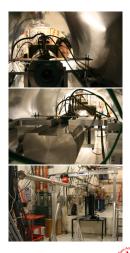
イロト イポト イヨト イヨト

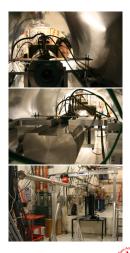

HPRF cavity beam test (Yonehara)

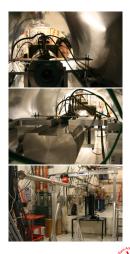
- First beam experiment at MTA
- Currently our highest priority expected to run within the next few weeks
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)

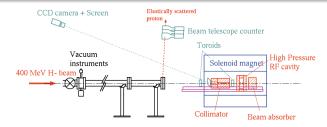


イロト イポト イヨト イヨト


- First beam experiment at MTA
- Currently our highest priority expected to run within the next few weeks
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)

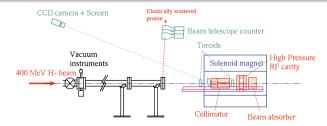

- First beam experiment at MTA
- Currently our highest priority expected to run within the next few weeks
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)


- First beam experiment at MTA
- Currently our highest priority expected to run within the next few weeks
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)



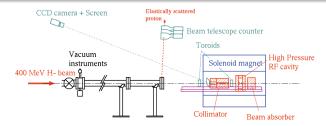
- First beam experiment at MTA
- Currently our highest priority expected to run within the next few weeks
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)

- First beam experiment at MTA
- Currently our highest priority expected to run within the next few weeks
- HPRF shown to work in high B at the MTA
- Goal: evaluate loading due to beam induced ionization
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity during next bunch
 - may be mitigated by electronegative dopant gas
 - involves atomic physics and unknown lifetimes of various H ions (Tollestrup)

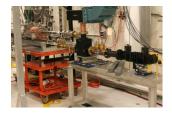


- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July

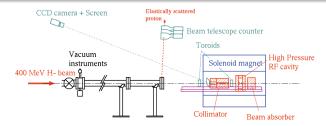
イロト イ理ト イヨト イヨト



- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July

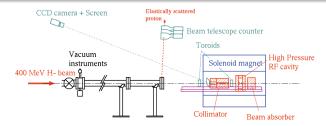


イロト イ理ト イヨト イヨト



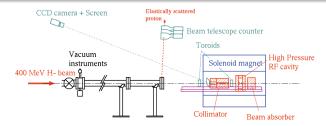
- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July

イロト イポト イヨト イヨ



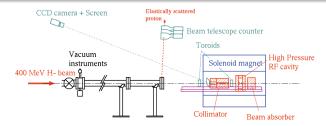
- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July

イロト イポト イヨト イヨ



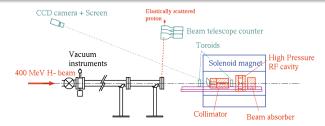
- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July

ヘロト ヘアト ヘビト ヘ


- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July

- < ≣ → <

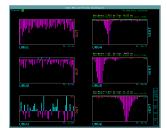
< < >> < </>



- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July

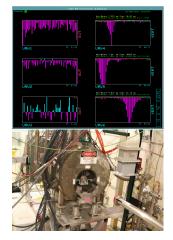
< 🗇 🕨

- instrumentation commissioned (Giulia Collura poster)
- cavity installed in hall
- operated with N2 gas
- beam tuning to center of hall in progress
- H2 run next week
- Installation in magnet and beam test in July (2011)

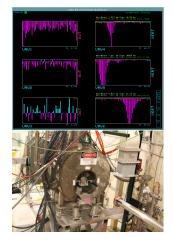


First beam pulse to "emittance absorber" (beam stop 2) Feb 28

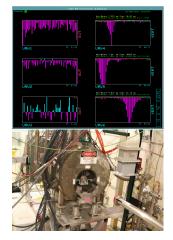
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Later tuned to 100% transport efficiency
- Steered past absorber early March
- Various beamline instrumentation problems addressed
- Good beam spot past absorber but position too high at magnet
- Extra trims installed, not enough



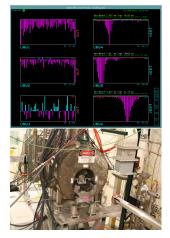
- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Later tuned to 100% transport efficiency
- Steered past absorber early March
- Various beamline instrumentation problems addressed
- Good beam spot past absorber but position too high at magnet
- Extra trims installed, not enough

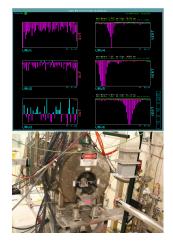


- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Later tuned to 100% transport efficiency
- Steered past absorber early March
- Various beamline instrumentation problems addressed
- Good beam spot past absorber but position too high at magnet
- Extra trims installed, not enough

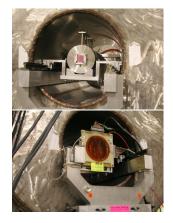


- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Later tuned to 100% transport efficiency
- Steered past absorber early March
- Various beamline instrumentation problems addressed
- Good beam spot past absorber but position too high at magnet
- Extra trims installed, not enough

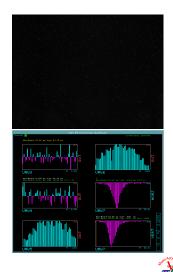

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Later tuned to 100% transport efficiency
- Steered past absorber early March
- Various beamline instrumentation problems addressed
- Good beam spot past absorber but position too high at magnet
- Extra trims installed, not enough


- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Later tuned to 100% transport efficiency
- Steered past absorber early March
- Various beamline instrumentation problems addressed
- Good beam spot past absorber but position too high at magnet

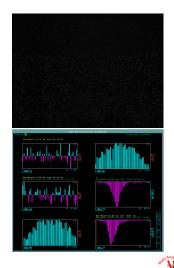
• Extra trims installed, not enough

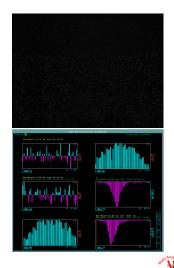


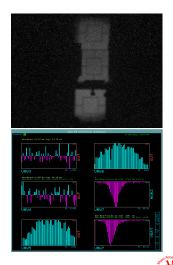
- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Later tuned to 100% transport efficiency
- Steered past absorber early March
- Various beamline instrumentation problems addressed
- Good beam spot past absorber but position too high at magnet
- Extra trims installed, not enough

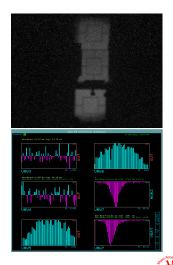


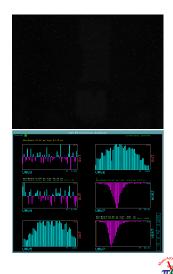
- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

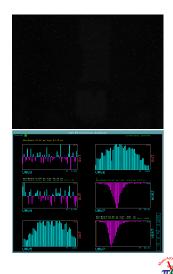


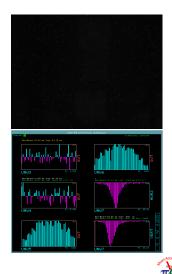

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

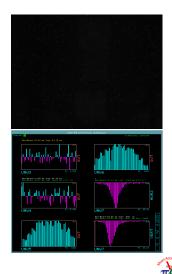

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

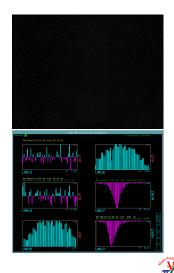

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

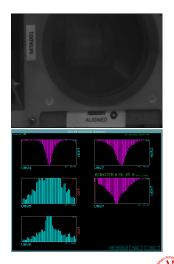

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

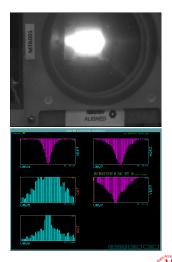

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week


- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

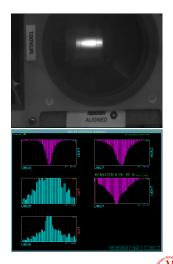

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

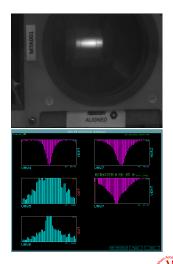

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

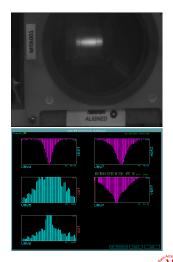

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

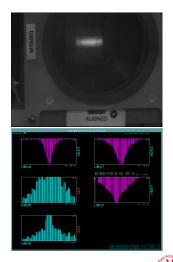

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

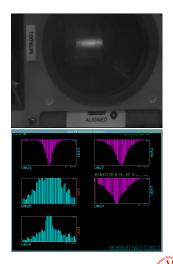

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

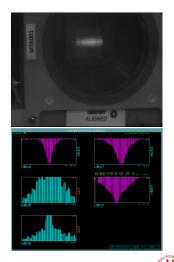

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week


- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

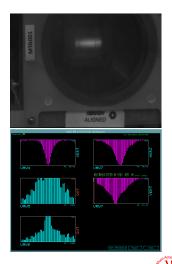

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

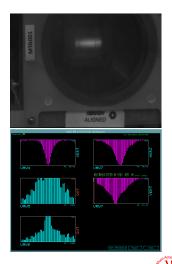

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week


- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week


- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week


- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week


- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week


- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

- SWIC and phosphor screen upstream of collimator to measure beam spot
- Insufficient vertical bend at the end to straighten beam
- 2-week shutdown to install stronger dipole
- Centered and focused vertically last week
- O(10¹¹) protons through collimators
- Expect symmetric beam spot next week

Magnetic Field Mapping

- Magnetic insulation depends strongly on angle
- MTA solenoid field never mapped in detail before
- Expect good alignment of magnetic axis with bore based on manufacturing tolerances but wanted to confirm

- Fiducial holes drilled during cavity fabrication
- Machined blocks to mount NIKHEF sensors
- Used cavity as mounting fixture data taken at corners
- Gaussmeter fixed in bore for normalization
- Bore to be mapped next with cart on rails

Yağmur Torun

MTA Update - Muon Collider 2011 - 6/29/11

Summary of experimental program

- trying to demonstrate a working solution to RF cavity operation in high external magnetic field for muon cooling
- major MAP milestone
- big impact on cooling channel design and future system tests
- multipronged approach to cover maximum ground with available resources

Cavity		Outstanding issues	Proposed resolution	Experimental tests
	pillbox	Breakdown and damage	Better materials	Mo, W, Be buttons Be-walled 805-MHz cavity
			Surface processing	Electropolished buttons 201-MHz pillbox in B-field
Vacuum			Coatings	ALD-coated buttons ALD-coated cavity
	rectangular		Magnetic insulation	E⊥B box cavity E∥B box cavity
	open-iris			Modified cavity-coil geometry
	ressurized	B-field/pressure effects	Materials tests	805-MHz 4-season cavity
Pre		Beam-induced ionization	Measure ionization lifetime	805-MHz cavity in beam
		Frequency dependence	Test at different frequency	Pressurized 201-MHz cavity

Students

- Anastasia Belozertseva (U. Chicago) magnetic field mapping
- Last Feremenga (U. Chicago) magnetic field mapping
- Ben Freemire (IIT) HPRF beam test, everything else [poster]
- Giulia Collura (Torino) HPRF beam test [poster]
- Timofey Zolkin (U. Chicago) dark current instrumentation, pillbox data [poster]
- Peter Lane (IIT) acoustic sensors for detecting cavity sparks
- Raul Campos beamline magnet mechanical support
- Ivan Orlov GEANT4 simulation of experimental setup

Yağmur Torun

MTA Update - Muon Collider 2011 - 6/29/11

MTA Schedule and Outlook

- Experimental program
 - HPRF cavity in beam almost there
 - 805 MHz pillbox cavity with Be and other buttons
 - 201 MHz cavity coupler repair and operation in large B
 - further HPRF beam tests as needed
 - rectangular box cavity with B \parallel E
 - more \perp E rectangular box cavity tests
 - 4-season cavity
 - ALD cavity
- Infrastructure
 - beam commissioning close to completion
 - cryo upgrade in progress
 - magnet field mapping at next opportunity
 - RF circulator/switch to be installed in Linac
 - coupling coil and single-cavity module in Hall
- Expect to demonstrate a working solution to RF cavity operation in high magnetic field within the next 2 years

