
Page 1	

May 10, 2011	

ARRA LQCD Computing
Technical Design & Performance

Chip Watson
May 10, 2011

Page 2	

May 10, 2011	

Performance Goal: 	

	
To significantly increase the computing resources available to the
USQCD collaboration for “analysis”…	

	
Original target was 16 Tflops sustained aggregate performance
averaged over the 3 dominant inverter actions: 	

•  Domain Wall Fermions (DWF)	

•  Staggered (asqtad = a-squared tadpole)	

•  Clover, particularly anisotropic clover	

	
As a slight variation from the LQCD-ext project, all three actions are
included in the benchmark definition. 	

LQCD ARRA Technical Goals	

Page 3	

May 10, 2011	

(Reminder) LQCD computing proceeds in 2 phases:	

1.  Configuration generation (on supercomputers)	

  Must be produced sequentially, at highest performance	

  End product: 1000+ configuration files	

2.  Analysis (propagator generation + observables)	

  1000 + jobs able to run in parallel	

  Target performance: 1% of configuration generation (then at 10’s of Tflops)	

Analysis is the task relevant for this project. For benchmarking for the LQCD ARRA
resources, we selected production lattice sizes for each of the 3 inverters: 	
	

  Anisotropic Clover: 24^3 x 128	

  Asqtad: 56^3 x 96	

  DWF: 32^3 x 64 x 16	

Inverters were run on a single node with a fraction of this volume in order to project
the performance of a multi-node job achieving > 0.25 Tflops	

Quantifying Aggregate Performance	

Page 4	

May 10, 2011	

Strategy: buy as much computing capacity for the dollar as possible.	

Challenge: setting the split between GPU (highest performance) and
CPU (greatest flexibility)	

Phase 1: 25% of compute funds to GPU	

  Enough software was becoming ready to exploit this capacity, and software

development environment (CUDA) was maturing rapidly	

  Impact on non-GPU capacity for USQCD was minimal (15%)	

  GPUs allowed this project to double the USQCD total computing capacity	

Phase 2: 50% of compute funds to GPU	

  Multiple groups were in production, and were eager to absorb a large increase

in capacity (allowed project to again double the USQCD total capacity)	

  Availability of ECC memory on the GPUs held a promise of expanding

beyond inverters to satisfy more of the collaborations computing requirements	

  Choice of 25% vs. 50% was only a 10% effect on non-GPU, and once the first

phase of the LQCD-ext IB cluster at Fermilab came online only a few months
later, this impact was further reduced to about 7%	

GPU vs. CPU	

Page 5	

May 10, 2011	

The most cost effective conventional nodes were dual Intel systems,	

	
2.4 GHz Nehalem / 2.53 GHz Westmere (phase 1 / 2), 	

	
giving about 20 Gflops/node, so needed 16 nodes for a job.	

QDR Infiniband switches have 36 ports, so can hold 32 nodes and still have ports
free to connect to the file systems (powers of 2 are best for LQCD). Deploying
multiple sets of 32 nodes reduces the cost of the Infiniband fabric while
maintaining the highest efficiency for jobs up to 640 Gflops.	

CPU Cluster & IB Fabric Design	

17 racks purchased for phases 1 & 2:	

	
13 as single racks non-oversubscribed, 	

	
 4 interconnected 2:1 oversubscribed 	

	
 (to support job up to ~2 Tflops)	

Note: homogeneous fabric with 2:1 oversubscription
would have required 13 additional switches and
200 cables, and would have had somewhat worse
multi-node scaling, yielding 5%-10% lower
performance per dollar. A few extra nodes on
the fabric solved the problems of 1 or 2 failed
nodes preventing large jobs from running.	

All racks have 2 uplinks to a core switch for file services	

Page 6	

May 10, 2011	

Planned capacity, performance & budget:	

	
280 TB at $1K / TB, > 1 GB/s, $280K	

	
Conservative cost estimate: higher than Fermilab had been getting in large bulk
procurements associated with the Tier 1 center but lower than Jlab’s recent buys.	

Final Configuration: 416 TB, > 2 GB/s, $228K	

 Phase 1: 224 TB across 14 servers	

–  dual Nehalem 2.26 GHz, 12 GB memory	

–  24*1TB disks, 24 disk RAID controller, DDR Infiniband	

–  bandwidth measured at 1.4 GB/s using 6 nodes (single DDR uplink)	

 Phase 2: 192 TB across 4 servers	

–  similar to above, but with 3 RAID-6 (8+2) strips per server instead of 2	

–  2 TB disks, QDR Infiniband, higher performance RAID controller	

–  somewhat lower bandwidth / TB, but still more than necessary	

File Servers	

Page 7	

May 10, 2011	

Design Parameter Space:	

–  NVIDIA or ATI	

	
LQCD software use NVIDIA’s CUDA language, so NVIDIA selected	

–  NVIDIA options: 	

•  Phase 1: GT200b chip: Tesla card or 4 GPU array, or gaming card	

	
Tesla line offered larger memory and promise of higher quality at very high
price; quality issue wasn’t so relevant for inverters so gaming cards selected	

•  Phase 2: Fermi chip: Tesla card, or gaming card	

	
Tesla line now offered ECC memory, useful for non-inverter applications;
a mix of card types was chosen	

–  Number of GPUs per host (i.e. per CPU)	

–  GPU I/O bandwidth: single or dual Intel chipsets on host	

–  Networking (multi-node jobs or just single node)	

GPU Cluster Design	

Page 8	

May 10, 2011	

Amdahl’s Law (Problem)	

Also disappointing in this scenario: the GPU is idle 80% of the time!	

Fortunately many LQCD codes spend > 95% of their clock time in a single

kernel, a matrix inversion, and so for these applications Amdahl’s Law was
not (yet) a show-stopper.	

Ultimate solution: we need to move more code to the GPU, and/or need task
level parallelism (overlap CPU and GPU). 	

2x clock time improvement	

A major challenge in exploiting GPUs is Amdahl’s Law:	

If 60% of the code is GPU accelerated by 6x, 	

the net gain is only 2x.	

Page 9	

May 10, 2011	

Cost optimization:	

–  Host is ~$4K, so 4 GPUs per host better amortizes that cost than just 1 or 2,

but worsens the effect of Amdahl’s Law (acceleration is higher)	

–  For jobs primarily running inversions, 4 GPUs would be more cost effective

than just 2. Prior to phase 1 award we identified 2 classes of applications
that were suitably inverter heavy (thus capable of exploiting 4 per node).
Additional applications became ready in time for phase 2, allowing for an
even greater deployment of 4 GPU nodes	

–  I/O bandwidth: suitable dual chipset motherboards appeared just in time for
us to consider them for 4 GPU	

Conclusions:	

–  Buy mostly quad GPU nodes (cost effective)	

–  Buy some dual GPU nodes with Infiniband for R&D for future larger

problems and/or more CPU per GPU	

Serendipity: after phase 1 award we were able to switch from 1 GB gaming cards
to 2 GB gaming cards (we had a helpful vendor). This product soon disappeared
from the marketplace.	

Design Tradeoffs	

Page 10	

May 10, 2011	

Phase 1 GPU Hardware	

Host:	

 2.4 GHz Nehalem	

 24 or 48 GB memory / node (mixed)	

 65 nodes, 200 GPUs	

Original configuration:	

 40 nodes w/ 4 GTX-285 GPUs (2 GB)	

 16 nodes w/ 2 GTX-285 + QDR IB	

 2 nodes w/ 4 Tesla C1050 or S1070	

 7 nodes with no GPU for later R&D	

Page 11	

May 10, 2011	

Infiniband Cluster:	

320 nodes, 5.5 Tflops aggregate on LQCD codes	

	
dual quad core Nehalem 2.4 GHz, 24 GB memory	

	
QDR (quad data rate, 40 Gbps) Infiniband	

GPU Cluster:	

	
65 nodes, 200 GPUs	

16 dual GPU, QDR Infiniband	

42 quad GPU	

 7 empty (future R&D, alternate GPU cards)	

 192 of the 200 GPUs were gaming cards, GTX-285 	
	

	
Host nodes all had the same specs as the conventional cluster
(above) except some had 48 GB memory & all had dual 5520
chipsets to support 4 GPUs or Infiniband cards	

File Servers: 	

224 TB Lustre system, on Infiniband, >1GB/s	

Phase 1 Hardware Summary	

Page 12	

May 10, 2011	

Infiniband Cluster:	

224 nodes, 4.0 Tflops aggregate	

–  dual quad core Westmere 2.53 GHz	

–  24 GB memory	

–  QDR Infiniband	

–  all racks configured as 32 nodes, no oversubscription	

–  all nodes capable of holding one GPU (future upgrade)	

GPU Cluster:	

	
52 nodes, 338 GPUs (all NVIDIA Fermi)	

–  16 quad GPU, QDR Infiniband in half bandwidth slot	

–  36 quad GPU	

–  32 additional GPUs to upgrade the Phase 1 duals to quads	

–  28 additional GPUs to fill the Phase 1 empty nodes	

–  36 additional GPUs to go into one rack of the Phase 2 Infiniband cluster (above)	

	
128 of the GPUs were Tesla Fermi (with 3 GB ECC memories) => 32 quad servers w/ half QDR	

	
GPU hosts have same specs as the IB cluster above except that they all have 48 GB memory,
and only some have QDR IB. Also: all Phase 1 GPU nodes were upgraded to 48 GB memory.	

File Servers: 	

Additional 192 TB added to Lustre	

Phase 2 Hardware Summary	

Page 13	

May 10, 2011	

Card	
 GPU	
 #cores	

clock
speed
(GHz)	

memory
size

(GB)	

raw memory
bandwidth

(GB/s)	

clover
inverter
(Gflops)1	

cost	

GTX-285	
 GT200b	
 240	
 1.47	
 2	
 159	
 135	
 $500	

C1060	
 GT200b	
 240	
 1.30	
 4	
 102	
 100	
 $1500	

GTX-480	
 Fermi	
 480	
 1.40	
 1.25	
 177	
 270	
 $500	

C20502	
 Fermi	
 448	
 1.15	
 2.67	
 144	
 185	
 $2100	

GPU Comparison	

1 Newest development code gets up to 310 Gflops on GTX-480; data is this talk uses older 270 Gflops;
all numbers are for mixed precision	

2 C2050 evaluated with ECC enabled	

The Fermi Tesla line of cards (C2050) has a significant advantage in having ECC memory
so that more than just inverters can be safely executed. This comes at a steep price: 4x
on GPU price, and 1.5x on lower performance. Integrated into a host this yields a price
performance difference between the two of 3x.	

Conclusion: judicious use of gaming cards is a very good idea as long as we have inverter
heavy loads (which we do).	

Page 14	

May 10, 2011	

The 192 GTX-285 cards we bought in phase 1 were very stable, and
reported no errors in running a memory test.	

The 210 GTX-480 cards did much worse:	

	
86 encountered no errors in a 2 hour test	

	
80 encountered 1-10 errors in 2 hours	

	
26 encountered memory errors at 1-10 per minute	

	
 2 encountered memory errors at about 1 per second	

	
 4 undetected by the NVIDIA driver	

	
 2 bad fan & hung running CUDA code	

	
10 hung running CUDA code	

We were an early buyer of GTX-480 cards for computing, and apparently
caught some early quality control issues.	

The first two sets, 166 GPUs, were put into production use.	

GTX-480 Problems	

Page 15	

May 10, 2011	

1.  The manufacturer PNY wasn’t helpful, even with cards that would not
run at all. Only 2 were replaced under manufacturer warranty.	

2.  Jlab tried several other memory test programs, tried under-clocking
the poor cards, all to no avail. LQCD software Chroma/QUDA,
however, ran successfully on all functioning cards, despite the
memory errors (evidence that low error rates are not a problem).	

3.  We developed a more rigorous testing procedure, running a 2 hour test
on every GPU every week to catch any further degradation, and
removing from the production queue any GPU with more than 10
errors in 2 hours. Users were warned that the cards were only suitable
for inverters, and that applications should test inversion residuals.	

4.  The vendor Koi eventually agreed to replace 35 cards with new cards
from ASUS. All but 1 of these passed our tests with low error rates.	

5.  Today 4*45 = 180 GTX-480s are in production. Memory testing is
ongoing, and has caught one GTX-285 and one C2050 failure.	

GTX-480 Problem Resolution	

Page 16	

May 10, 2011	

Reliability – System architecture will be complicated by the
increasingly probabilistic nature of transistor behavior
due to reduced operating voltages, gate oxides, and
channel widths/lengths resulting in very small noise
margins. Given that state-of-the-art chips contain billions
of transistors and the multiplicative nature of reliability
laws, building resilient computing systems out of such
unreliable components will become an increasing
challenge. This cannot be cost- effectively addressed with
pairing or TMR; rather, it must be addressed by X-stack
software and perhaps even scientific applications.	

-- from The International Exascale Software Project Roadmap	

http://www.exascale.org/	

Gaming GPUs: An Early Taste of Exascale	

Page 17	

May 10, 2011	

1.  Balance between Tesla (ECC) and GTX	

–  GTX is 3x more cost effective for single precision inverters on single box	

–  Single precision was to be a large fraction of running for the coming year	

2.  Balance between single node, and multi-node running (i.e. Infiniband)	

–  Multi-node is needed for performance greater than 1 Tflops in the inverter	

–  Multi-node is also needed for larger problems, over 10 GB in the GPUs	

	
32^3x256 just fits into 4 Fermi GPUs, but needs 96 GB host memory, which
is only affordable as two nodes of 48 GB, hence a need for IB	

	
But: adding a QDR HCA precluded running 4 GPUs in a (commodity) box,
dropping to 2 GPUs increased cost per flop by 33% (more “box+cpu” cost
overhead, amortized over fewer GPUs)	

3.  Balance between GPU and CPU	

	
Codes with only a portion of the code ported to the GPU can profit from having
only a single GPU (i.e. more CPU per GPU). This is not as big a win per GPU,
but still more optimal than no GPU.	

Key GPU Decision Points (past and future)	

Page 18	

May 10, 2011	

The Phase 2 Infiniband cluster was configured so that each node can hold
1 GPU, giving a very cost effective way to add many GPUs, but this
“consumes” standard cluster nodes (but increases their performance
considerably).	

If $500 GTX cards are placed into these nodes, then the cost of NOT
using the GPU is rather small, about 12% of the total node cost. But
when the GPU load is very heavy, the capability is there to use, and
could yield a 2x-6x performance boost (for 1 GPU). 	

Current Status: of the 17 racks of the conventional cluster nodes
(Phase 1 + 2), 1 rack (32 nodes + 2 spares) have been upgraded to
include a GPU. This set of 32 nodes turned out to be valuable for one
project that needed >50 GB of GPU memory to hold their problem.	

Blurring the Boundary	

Page 19	

May 10, 2011	

Project	
 2010-2011
Hours	

#GPUs,
nodes	

Jpsi core hours /
GPU hour 	

(job time)	

Effective
Performance	

Gflops/node	

GPU used	

Spectrum	
 1,359,000	
 4, 1	
 180	
 800	
 (average)	

thermo	
 503,000	
 4, 1	
 90	
 400	
 (average)	

disco	
 459,000	
 4, 1	
 92	
 410	
 C2050	

Tcolor	
 404,000	
 4, 1	
 40	
 175	
 GTX285	

emc	
 311,000	
 4, 1	
 80	
 350	
 (average)	

gwu	
 136,000	
 32, 32	
 47	
 50	
 GTX285	

GPU Job Effective Performance	

Comparing GPUs to regular clusters can’t be done on the basis of inverter

performance (Amdahl’s Law problem), so instead we compare job clock times,
and from that derive an “effective” performance, which is the cluster inverter
performance multiplied by the job clock time reduction.	

The following table shows the number of core-hours in a job needed to match one
GPU-hour in a job. Last project used 32 single GPU nodes and was I/O bound.	

The allocation-weighted performance of the cluster is 63 TFlops.	

Page 20	

May 10, 2011	

Science per Dollar for LQCD Applications

1990 2000 2010

Mflops / $
101

10-1

100

QCDSP

Commodity clusters, optimized
to a limited number of science
problems, yield the most cost
effective platform.
GPUs increase that cost
effectiveness.

10-2

Vector Supercomputers,
including the Japanese
Earth Simulator

JLab SciDAC Prototype Clusters

QCDOC

2002
2003

2004

GPUs are highly cost effective accelerators
for software that can exploit them

Japanese Earth
Simulator

2006

BlueGene/L

2007

BlueGene/P

102

 2010

2010

2009

 2009

Page 21	

May 10, 2011	

The ARRA LQCD Computing project has deployed 	

 10 Tflops conventional infiniband systems	

416 TBytes disk, backed by multi-petabyte tape library	

508 GPUs equivalent to 100 Tflops sustained capacity for

anisotropic clover inverter-heavy jobs, and 63 Tflops for
the mix of jobs running this year	

Total deployed capacity: 73 Tflops (effective), a gain of
4.5x over the original plan of 16 Tflops.	

	
The total effective Tflops depends upon the efficiency with which the
applications use the GPU, and could rise as a larger fraction of the
existing code is ported to the GPU (reduced Amdahl’s Law problem),
or fall as new applications with lower GPU intensity begin to exploit
the GPUs.	

Technical Summary	

