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Performance Goal: 	

	
To significantly increase the computing resources available to the 
USQCD collaboration for “analysis”…	


	
Original target was 16 Tflops sustained aggregate performance 
averaged over the 3 dominant inverter actions: 	


•  Domain Wall Fermions (DWF)	


•  Staggered (asqtad = a-squared tadpole)	


•  Clover, particularly anisotropic clover	


	
As a slight variation from the LQCD-ext project, all three actions are 
included in the benchmark definition.  	


LQCD ARRA Technical Goals	
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(Reminder) LQCD computing proceeds in 2 phases:	


1.  Configuration generation (on supercomputers)	

  Must be produced sequentially, at highest performance	

  End product: 1000+ configuration files	


2.  Analysis (propagator generation + observables)	

  1000 + jobs able to run in parallel	

  Target performance: 1% of configuration generation (then at 10’s of Tflops)	


Analysis is the task relevant for this project. For benchmarking for the LQCD ARRA 
resources, we selected production lattice sizes for each of the 3 inverters: 	
	

  Anisotropic Clover: 24^3 x 128	

  Asqtad: 56^3 x 96	

  DWF: 32^3 x 64 x 16	


Inverters were run on a single node with a fraction of this volume in order to project 
the performance of a multi-node job achieving > 0.25 Tflops	


Quantifying Aggregate Performance	
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Strategy: buy as much computing capacity for the dollar as possible.	


Challenge: setting the split between GPU (highest performance) and            
CPU (greatest flexibility)	


Phase 1:    25% of compute funds to GPU	

  Enough software was becoming ready to exploit this capacity, and software 

development environment (CUDA) was maturing rapidly	

  Impact on non-GPU capacity for USQCD was minimal (15%)	

  GPUs allowed this project to double the USQCD total computing capacity	


Phase 2:    50% of compute funds to GPU	

  Multiple groups were in production, and were eager to absorb a large increase 

in capacity (allowed project to again double the USQCD total capacity)	

  Availability of ECC memory on the GPUs held a promise of expanding 

beyond inverters to satisfy more of the collaborations computing requirements	

  Choice of 25% vs. 50% was only a 10% effect on non-GPU, and once the first 

phase of the LQCD-ext IB cluster at Fermilab came online only a few months 
later, this impact was further reduced to about 7%	


GPU vs. CPU	
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The most cost effective conventional nodes were dual Intel systems,	

	
2.4 GHz Nehalem / 2.53 GHz Westmere (phase 1 / 2), 	

	
giving about 20 Gflops/node, so needed 16 nodes for a job.	


QDR Infiniband switches have 36 ports, so can hold 32 nodes and still have ports 
free to connect to the file systems (powers of 2 are best for LQCD). Deploying 
multiple sets of 32 nodes reduces the cost of the Infiniband fabric while 
maintaining the highest efficiency for jobs up to 640 Gflops.	


CPU Cluster & IB Fabric Design	


17 racks purchased for phases 1 & 2:	

	
13 as single racks non-oversubscribed, 	

	
  4 interconnected 2:1 oversubscribed           	

	
     (to support job up to ~2 Tflops)	


Note: homogeneous fabric with 2:1 oversubscription 
would have required 13 additional switches and 
200 cables, and would have had somewhat worse 
multi-node scaling, yielding 5%-10% lower 
performance per dollar.  A few extra nodes on 
the fabric solved the problems of 1 or 2 failed 
nodes preventing large jobs from running.	


All racks have 2 uplinks to a core switch for file services	
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Planned capacity, performance & budget:	

	
280 TB at $1K / TB,  > 1 GB/s,  $280K	

	
Conservative cost estimate: higher than Fermilab had been getting in large bulk 
procurements associated with the Tier 1 center but lower than Jlab’s recent buys.	


Final Configuration:   416 TB, > 2 GB/s, $228K	

    Phase 1:   224 TB across 14 servers	


–  dual Nehalem 2.26 GHz, 12 GB memory	

–  24*1TB disks, 24 disk RAID controller, DDR Infiniband	

–  bandwidth measured at 1.4 GB/s using 6 nodes (single DDR uplink)	


    Phase 2:    192 TB across 4 servers	

–  similar to above, but with 3 RAID-6 (8+2) strips per server instead of 2	

–  2 TB disks, QDR Infiniband, higher performance RAID controller	

–  somewhat lower bandwidth / TB, but still more than necessary	


File Servers	
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Design Parameter Space:	

–  NVIDIA or ATI	

	
LQCD software use NVIDIA’s CUDA language, so NVIDIA selected	


–  NVIDIA options: 	


•  Phase 1: GT200b chip: Tesla card or 4 GPU array,  or gaming card	

	
Tesla line offered larger memory and promise of higher quality at very high 
price; quality issue wasn’t so relevant for inverters so gaming cards selected	


•  Phase 2: Fermi chip: Tesla card, or gaming card	

	
Tesla line now offered ECC memory, useful for non-inverter applications;       
a mix of card types was chosen	


–  Number of GPUs per host (i.e. per CPU)	


–  GPU I/O bandwidth: single or dual Intel chipsets on host	


–  Networking (multi-node jobs or just single node)	


GPU Cluster Design	
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Amdahl’s Law (Problem)	


Also disappointing in this scenario: the GPU is idle 80% of the time!	

Fortunately many LQCD codes spend > 95% of their clock time in a single 

kernel, a matrix inversion, and so for these applications Amdahl’s Law was 
not (yet) a show-stopper.	


Ultimate solution: we need to move more code to the GPU, and/or need task 
level parallelism (overlap CPU and GPU).  	


2x clock time improvement	


A major challenge in exploiting GPUs is Amdahl’s Law:	

If 60% of the code is GPU accelerated by 6x, 	

the net gain is only 2x.	
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Cost optimization:	

–  Host is ~$4K, so 4 GPUs per host better amortizes that cost than just 1 or 2, 

but worsens the effect of Amdahl’s Law (acceleration is higher)	

–  For jobs primarily running inversions, 4 GPUs would be more cost effective 

than just 2.  Prior to phase 1 award we identified 2 classes of applications 
that were suitably inverter heavy (thus capable of exploiting 4 per node). 
Additional applications became ready in time for phase 2, allowing for an 
even greater deployment of 4 GPU nodes	


–  I/O bandwidth: suitable dual chipset motherboards appeared just in time for 
us to consider them for 4 GPU	


Conclusions:	

–  Buy mostly quad GPU nodes (cost effective)	

–  Buy some dual GPU nodes with Infiniband for R&D for future larger 

problems and/or more CPU per GPU	


Serendipity: after phase 1 award we were able to switch from 1 GB gaming cards 
to 2 GB gaming cards (we had a helpful vendor).  This product soon disappeared 
from the marketplace.	


Design Tradeoffs	
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Phase 1 GPU Hardware	

Host:	

  2.4 GHz Nehalem	

  24 or 48 GB memory / node (mixed)	

  65 nodes, 200 GPUs	


Original configuration:	

  40 nodes w/ 4 GTX-285 GPUs (2 GB)	

  16 nodes w/ 2 GTX-285 + QDR IB	

    2 nodes w/ 4 Tesla C1050 or S1070	

    7 nodes with no GPU for later R&D	
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Infiniband Cluster:	

320 nodes, 5.5 Tflops aggregate on LQCD codes	


	
dual quad core Nehalem 2.4 GHz, 24 GB memory	

	
QDR (quad data rate, 40 Gbps) Infiniband	


GPU Cluster:	

	
65 nodes, 200 GPUs	


16 dual GPU, QDR Infiniband	

42 quad GPU	

  7 empty (future R&D, alternate GPU cards)	


 192 of the 200 GPUs were gaming cards, GTX-285 	
	

	
Host nodes all had the same specs as the conventional cluster 
(above) except some had 48 GB memory & all had dual 5520 
chipsets to support 4 GPUs or Infiniband cards	


File Servers:    	

224 TB Lustre system, on Infiniband, >1GB/s	


Phase 1 Hardware Summary	
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Infiniband Cluster:	

224 nodes, 4.0 Tflops aggregate	

–  dual quad core Westmere 2.53 GHz	

–  24 GB memory	

–  QDR Infiniband	

–  all racks configured as 32 nodes, no oversubscription	

–  all nodes capable of holding one GPU (future upgrade)	


GPU Cluster:	

	
52 nodes, 338 GPUs (all NVIDIA Fermi)	

–  16 quad GPU, QDR Infiniband in half bandwidth slot	

–  36 quad GPU	

–  32 additional GPUs to upgrade the Phase 1 duals to quads	

–  28 additional GPUs to fill the Phase 1 empty nodes	

–  36 additional GPUs to go into one rack of the Phase 2 Infiniband cluster (above)	

	
128 of the GPUs were Tesla Fermi (with 3 GB ECC memories) => 32 quad servers w/ half QDR	

	
GPU hosts have same specs as the  IB cluster above except that they all have 48 GB memory, 
and only some have QDR IB.  Also: all Phase 1 GPU nodes were upgraded to 48 GB memory.	


File Servers:    	

Additional 192 TB added to Lustre	


Phase 2 Hardware Summary	
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Card	
 GPU	
 #cores	

clock 
speed 
(GHz)	


memory 
size 

(GB)	


raw memory 
bandwidth 

(GB/s)	


clover 
inverter 
(Gflops)1	


cost	


GTX-285	
 GT200b	
 240	
 1.47	
 2	
 159	
 135	
 $500	

C1060	
 GT200b	
 240	
 1.30	
 4	
 102	
 100	
 $1500	

GTX-480	
 Fermi	
 480	
 1.40	
 1.25	
 177	
 270	
 $500	

C20502	
 Fermi	
 448	
 1.15	
 2.67	
 144	
 185	
 $2100	


GPU Comparison	


1 Newest development code gets up to 310 Gflops on GTX-480; data is this talk uses older 270 Gflops; 
all numbers are for mixed precision	


2 C2050 evaluated with ECC enabled	


The Fermi Tesla line of cards (C2050) has a significant advantage in having ECC memory 
so that more than just inverters can be safely executed.  This comes at a steep price: 4x 
on GPU price, and 1.5x on lower performance.  Integrated into a host this yields a price 
performance difference between the two of 3x.	


Conclusion: judicious use of gaming cards is a very good idea as long as we have inverter 
heavy loads (which we do).	
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The 192 GTX-285 cards we bought in phase 1 were very stable, and 
reported no errors in running a memory test.	


The 210 GTX-480 cards did much worse:	

	
86  encountered no errors in a 2 hour test	

	
80  encountered 1-10 errors in 2 hours	

	
26  encountered memory errors at 1-10 per minute	

	
  2  encountered memory errors at about 1 per second	

	
  4  undetected by the NVIDIA driver	

	
  2  bad fan & hung running CUDA code	

	
10  hung running CUDA code	


We were an early buyer of GTX-480 cards for computing, and apparently 
caught some early quality control issues.	


The first two sets, 166 GPUs, were put into production use.	


GTX-480 Problems	
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1.  The manufacturer PNY wasn’t helpful, even with cards that would not 
run at all.  Only 2 were replaced under manufacturer warranty.	


2.  Jlab tried several other memory test programs, tried under-clocking 
the poor cards, all to no avail.  LQCD software Chroma/QUDA, 
however, ran successfully on all functioning cards, despite the 
memory errors (evidence that low error rates are not a problem).	


3.  We developed a more rigorous testing procedure, running a 2 hour test 
on every GPU every week to catch any further degradation, and 
removing from the production queue any GPU with more than 10 
errors in 2 hours.  Users were warned that the cards were only suitable 
for inverters, and that applications should test inversion residuals.	


4.  The vendor Koi eventually agreed to replace 35 cards with new cards 
from ASUS.  All but 1 of these passed our tests with low error rates.	


5.  Today 4*45 = 180 GTX-480s are in production. Memory testing is 
ongoing, and has caught one GTX-285 and one C2050 failure.	


GTX-480 Problem Resolution	
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Reliability – System architecture will be complicated by the 
increasingly probabilistic nature of transistor behavior 
due to reduced operating voltages, gate oxides, and 
channel widths/lengths resulting in very small noise 
margins. Given that state-of-the-art chips contain billions 
of transistors and the multiplicative nature of reliability 
laws, building resilient computing systems out of such 
unreliable components will become an increasing 
challenge. This cannot be cost- effectively addressed with 
pairing or TMR; rather, it must be addressed by X-stack 
software and perhaps even scientific applications.	


-- from The International Exascale Software Project Roadmap	

http://www.exascale.org/	


Gaming GPUs: An Early Taste of Exascale	
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1.  Balance between Tesla (ECC) and GTX	

–  GTX is 3x more cost effective for single precision inverters on single box	

–  Single precision was to be a large fraction of running for the coming year	


2.  Balance between single node, and multi-node running (i.e. Infiniband)	

–  Multi-node is needed for performance greater than 1 Tflops in the inverter	

–  Multi-node is also needed for larger problems,  over 10 GB in the GPUs	


	
32^3x256 just fits into 4 Fermi GPUs, but needs 96 GB host memory, which 
is only affordable as two nodes of 48 GB, hence a need for IB	

	
But: adding a QDR HCA precluded running 4 GPUs in a (commodity) box, 
dropping to 2 GPUs increased cost per flop by 33% (more “box+cpu” cost 
overhead, amortized over fewer GPUs)	


3.  Balance between GPU and CPU	

	
Codes with only a portion of the code ported to the GPU can profit from having 
only a single GPU (i.e. more CPU per GPU).  This is not as big a win per GPU, 
but still more optimal than no GPU.	


Key GPU Decision Points (past and future)	
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The Phase 2 Infiniband cluster was configured so that each node can hold 
1 GPU, giving a very cost effective way to add many GPUs, but this 
“consumes” standard cluster nodes (but increases their performance 
considerably).	


If  $500 GTX cards are placed into these nodes, then the cost of NOT 
using the GPU is rather small, about 12% of the total node cost.  But 
when the GPU load is very heavy, the capability is there to use, and 
could yield a 2x-6x performance boost (for 1 GPU).  	


Current Status: of the 17 racks of the conventional cluster nodes                   
(Phase 1 + 2), 1 rack (32 nodes + 2 spares) have been upgraded to 
include a GPU.  This set of 32 nodes turned out to be valuable for one 
project that needed >50 GB of GPU memory to hold their problem.	


Blurring the Boundary	
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Project	
 2010-2011 
Hours	


#GPUs, 
nodes	


Jpsi core hours /
GPU hour 	

(job time)	


Effective 
Performance	

Gflops/node	


GPU used	


Spectrum	
 1,359,000	
 4, 1	
 180	
 800	
 (average)	

thermo	
 503,000	
 4, 1	
 90	
 400	
 (average)	

disco	
 459,000	
 4, 1	
 92	
 410	
 C2050	

Tcolor	
 404,000	
 4, 1	
 40	
 175	
 GTX285	

emc	
 311,000	
 4, 1	
 80	
 350	
 (average)	

gwu	
 136,000	
 32, 32	
 47	
 50	
 GTX285	


GPU Job Effective Performance	

Comparing GPUs to regular clusters can’t be done on the basis of inverter 

performance (Amdahl’s Law problem), so instead we compare job clock times, 
and from that derive an “effective” performance, which is the cluster inverter 
performance multiplied by the job clock time reduction.	


The following table shows the number of core-hours in a job needed to match one 
GPU-hour in a job.  Last project used 32 single GPU nodes and was I/O bound.	


The allocation-weighted performance of the cluster is 63 TFlops.	
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Science per Dollar for LQCD Applications 

1990 2000 2010 

Mflops / $ 
101 

10-1 

100 

QCDSP 

Commodity clusters, optimized 
to a limited number of science 
problems, yield the most cost 
effective platform. 
GPUs increase that cost 
effectiveness. 

10-2 

Vector Supercomputers, 
including the Japanese 
Earth Simulator  

JLab SciDAC Prototype Clusters 

QCDOC 

2002 
2003 

2004 

GPUs are highly cost effective accelerators 
for software that can exploit them 

Japanese Earth 
Simulator 

2006 

BlueGene/L 

2007 

BlueGene/P 

102 

 2010 

2010 

2009 

 2009 



Page 21	

May 10, 2011	


The ARRA LQCD Computing project has deployed 	

  10 Tflops conventional infiniband systems	

416 TBytes disk, backed by multi-petabyte tape library	

508 GPUs   equivalent to 100 Tflops sustained capacity for 

anisotropic clover inverter-heavy jobs, and 63 Tflops for 
the mix of jobs running this year	


Total deployed capacity: 73 Tflops (effective), a gain of 
4.5x over the original plan of 16 Tflops.	

	
The total effective Tflops depends upon the efficiency with which the 
applications use the GPU, and could rise as a larger fraction of the 
existing code is ported to the GPU (reduced Amdahl’s Law problem), 
or fall as new applications with lower GPU intensity begin to exploit 
the GPUs.	


Technical Summary	



