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MiniBooNE: Cherenkov detector searching for electron neutrino appearance v,

MicroBooNNE: First Liquid Argon Time Projection chamber to do beam physics




Detector Overview

MicroBooNE i1s a Liquid Argon (LLAr) Time Projection Chamber
(TPCG)

LAr TPC's have 6 times more sensitivity than Gherenkov detectors,
meaning smaller detectors for the same physics!

Length:10m
Radius: 4m
Fiducal volume:
~60 tons




MicroBooNNE has 2
detection components: | S
Charge-detection (1PC) : |
Light collection (PM'15s) ' —
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Charge in LAr

Charged particles are created in neutrino interactions, ex:

v +n—®+e'
c

As these charged particles pass through the LAr, they ionize the Argon atoms:

+

o wMe_ o | lonization

Resulting@ization electrons? drift due to an

applied electric field, and hit wires which are
spaced 3mm apart arranged in 3 planes.

These wires measure the deposited energy in the
detector



Ionized electrons
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electrons produce
signals by
induction 1n

first 2 wire planes,
collected on 3rd
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Event Displays

Quastelastic charged
current event in

ArgoNeuT
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Light in LAr

Fast scintillation path (This 1s what we trigger on!)
~6ns, 25% of the scintillation light

1Zu excimer

(e

Slow scintillation path (bonus light!)
~1.6 us after the interaction

3Zu excimer

In both cases, this light is emitted at 128 nm, which our phototubes cannot see
since 1t can not get through the glass

128 nm 1s 1n the “vacuum UV” so 1t doesn't even propagate through air!



Scintillation
light from the | ” 1
event 1s observed .‘

by PM1s behind

the wire planes - L
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Why light detection in LAr is important

* Rejection of background by comparing interaction time
with beam time structure (crucial for a surface detector!)

* Irniggering on interesting non-beam events

* Correcting for charge losses and diffusion as a function of
drift distance for a more accurate measurement of the
energy deposits

e Reduce noise by comparing optical and TPC data
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Light Collection
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We use a wavelength shifting material called A
Tetraphenyl Butadiene (TPB) to coat plates =1 /™ <>

which will go 1n front of the PMT5s
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We use a mixture of 50% TPB and 50%
polystyrene (PS) for our plate coating

We find that mixing the TPB in PS makes
the plates more durable and 1s much more
cost eftective!

Plate sample with a 50% TPB-PS coating



Comparison of coating methods

Vacuum setup at Fermilab

e McPherson 234 vacuum
monochrometer

e McPherson model 632 UV

Deuterium Lamp as light source

T _—. Em.l!- —

e Light from diffraction grating hits the \ gk en

plate and the output 1s measured by > grELng

the PMT on the other side |

Compare : gete ol | 8 ¥ Plateln
o § Charmier
e 33% TPB in PS plates
Deuterium ¢ - : A ;
e 50% TPB in PS plates - - et "
. : - . PMT goes

e evaporatively coated plates | 3 here

 TPB embedded plates
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Spectral Radiant Intensity, uW / (sr nm)

Comparison of coating methods
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Comparison of coating methods

Normalized to evaporatively coated plate
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Light Collection System

These plates are then placed in front
of 30 PM'I5s on the side of the cryostat.
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30 PMTs facing TPC




Sensitivity map
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equivalent at different
detector points
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Motivation: MiniBooNE

MiniBooNE is a Cherenkov Detector, sees E - S —
. . — 25 v, from p
Cherenkov light from charged particles g “H [ ' from K*
. 4 BT % = v, from K’
30 excess of electron-like events at low Y "B I« misid
: = - [ A— Ny
energies (not present with v ) : ¢ I it
1 other

Total Background

Possibilities:

e Unexpected background

14 15 3.

* New physics £°€ (Gev)

Cherenkov detectors cannot tell the difference between electrons and photons (y — e'e” ),
which are a large source of background
e (Cherenkov detectors only have a ~20cm vertex resolution, but 2cm is needed to

distinguish y's from e 's s



How MicroBooNE Can Help

| Energy loss in the first 2dmm of track: 1000 MeV electrons vs, 1000 MeV gammas ]

e (an tell the difference between e's 0.161 -
and 7y's — sensitive to the different - |
amounts of energy they deposit -
* High resolution reconstruction of 0.1F
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R&D for Future LAr Detectors

Liquid-Argon Time Projection Chambers

Outlook of R&D Program in the US

Active Volume

Yale TPC & Bo L 0.00002 kton
Yala TPC: Dimanitied
Bor Dparational
15x
ArgoNeuT 3 0.0003 kton
Oper S
Physics: Measune neutning-argon omss sectons
330x
MicroBooNE ( ol 0.1 kton
Consmuction begns 201 J
Proysics: Investigatie low-enegy neulring inbermctions
4x50x
LAr TPC for LBNE ( 20 kton
RAD in progress
Proymics: Measuns neutring oscillalions & 1000+ km
Final goal f Nx20 kton
Replcate proven technology II."
Frwysics: Soaarch o CP wolation in newutrng secior III,—
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R&D for Future LAr Detectors

Goal:

Make LLAr a viable option for future large detectors

Need to understand cross sections in LAr
Demonstrate scalability of technology
Cold electronics

Purity

Analysis tools
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Other Physics Goals

* Low energy cross section measurements

e Important for everyone!

, L : : . :
e (an't study neutrino interactions until we understand their cross sections
 How do we model neutrino interactions on different nuclei?

- Independent particle models?

— Multi-nucleon correlations?
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Other Physics Goals

* Burst supernova detection capability

Neutrinos are the only way we can see what's going on in the core of a
supernova! Window to nucleosynthesis, black hole and neutron star formation,

etc
MicroBoolNE is sensitive to all neutrino species for elastic scattering, charged

current, and neutral current events

Sensitive to low enough energies Supernova neutrino energy spectra
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Other Physics Goals

* Prepare for future proton decay searches (p*—K'v)

e Inwvisible to Water Cherenkov detectors

e We're not big enough to actually search for this yet but can develop PID, triggers, and
understand background

tarire (90 cm)

Simulated Proton
decay event in LAr

Wire number (34 cm)

-

FIG. 17: Simulated p — K1 7 event. The displayed area
covers 34 x 90 em?.

24



Other Physics Goals

e Sensitive to AS (fraction of proton spin carried by strange
quark)

. _ o(vp—vp)
Rf\: Cc/CC — g(vn—pu=p)

* May help us to better understand proton spin
e Input for spin-dependent WIMP searches
* Information on final states for modeling events in LAr

e 'T'his 1s impossible for most detectors because 1t 1s hard to tell
protons from neutrons
?' F

s VS ¥,
ey : ~_n
o p\ ’ A

MicroBooNE may be able to! It can measure the energy of the outgoing
proton and may be able to see the disconnected neutron-proton vertex s



Other Physics Goals

* Searches for exotic physics

Sensitive to decays such as Neutral Heavy Leptons, Axions, Paraphotons

Lorentz violation

Various models out there predict exotic physics... We have to be open to
the possibility of seeing something unexpected, especially in a field where
every experiment seems to have a new (or old) anomaly!

!
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— this plot, don't miss Joe
Grange's talk tomorrow!
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Conclusions

 MicroBooNE 1s an important stage 1n the
development of future large LAr 1TPCs

e It will also help our understanding of the
MiniBooNE experiment as well as making other
physics contributions!
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