Lattice QCD

Steven Gottlieb, Indiana University

Fermilab Users Group Meeting June 1-2, 2011

Caveats

- Lattice field theory is very active so there is not enough time to review everything. I made selections based on my interests.
- Not covered
 - High Temperature QCD
 - Nucleon Structure
 - Nonperturbative study of dynamical symmetry breaking
- Many sources of recent reviews cover additional material
 - Lattice 2010: Del Debbio, Heitger, Herdoiza, Hoelbling, Laiho
 - CKM2010: Shigemitsu
 - ICHEP2010: Della Morte, Gamiz, Scholz
 - Charm 2010: Na
- I will borrow (shamelessly).

Background

Basic Methodology

- Lattice QCD uses importance sampling of Euclidian path integral
- Calculation requires an ensemble of correctly weighted gauge field configurations
- Larger ensembles allow smaller statistical errors
- Many physics projects can be done with an archived ensemble
- Must discretize the theory to place on space-time grid
- Groups use actions with different discretizations, but should have same continuum limit

Control of Systematic Errors

- To generate an ensemble we must select certain physical parameters:
 - lattice spacing (a) or gauge coupling (β)
 - grid size $(N_s^3 \times N_t)$
 - sea quark masses $(m_{u,d}, m_s, m_c)$
- To control systematic error we must:
 - take continuum limit
 - take infinite volume limit
 - extrapolate in light quark mass; can use physical s, c quark masses

2+1(+1) Ensembles

- BMW: Symanzik/Clover, 3-5 lattice spacings
- JLQCD: Iwasaki/Overlap, a=0.11 fm (fixed topology)
- MILC: Symanzik/asqtad, 6 lattice spacings
- PACS-CS: Iwasaki/Clover, a=0.09 fm
- QCDSF: Symanzik/SLiNC, a=0.06 fm
- RBC/UKQCD: Iwasaki/DomainWall, 3 lattice spacings
- ETMC: Iwasaki/TwistedMass, 3 lattice spacings
- MILC: Symanzik/HISQ, 3+ lattice spacings

Results

- I will summarize selected results on
 - spectrum
 - quark masses
 - weak matrix elements
 - decay constants
 - semileptonic form factors
- See RMP 82, 1349 (2010) for results and references.
- See reviews mentioned earlier for many additional quantities and details

Summary of Hadron Spectrum 1

- Summary of continuum limit of asqtad spectrum results.
- States marked with diamond used to set quark mass or lattice spacing.
- For onium plot difference from spin averaged 1S mass.
- Details in RMP (2010),
 PDG (2008)

Quark Masses

- MILC and MILC/HPQCD reported first 2+1 flavor results in 2004
- HPQCD subsequently produced 2-loop renormalization constant and developed a novel technique of comparing 2-pt functions with continuum perturbative results
- A number of groups with different actions have results to be compared
- Electromagnetic effects are getting increased attention (RBC/ KEK/Nagoya, MILC, BMW)
- Nicely summarized by Laiho at Lattice 2010

Lattice Averages

- Laiho, Lunghi and Van de Water: PRD81 034503 (2010) [arXiv: 0910.2928] produced lattice averages for a number of quantities important for extracting Standard Model parameters.
 - www.latticeaverages.org
- FlaviaNet: a group that has been doing this for a while
 - http://ific.uv.es/flavianet/
- PDG: sometimes creates averages of lattice results
- Next four graphs (updated since Lattice 2010) are from Laiho, Lunghi, Van de Water

Light quark mass

- values in green included in average result
- average is cyan band
- red results are newer and may include 2 flavor results
- dotted errors don't include full systematics

Strange quark mass

 RBC/KEK/Nagoya results include quenched QED and use two volumes on one lattice spacing

Strange to light mass ratio

- PACS-CS results
 seem to vary from
 others, but there is
 no continuum
 extrapolation or
 correction for finite
 volume effects.
- Their volume is relatively small.

Up to down mass ratio

- This rules out vanishing u quark mass as solution to strong CP problem.
- BMW: arXiv:1011.2403
 results were available
 for previous quantities
- Their result for ratio
 ≈0.449, but not quoted in paper, so don't know error.

HPQCD's quark masses

- HPQCD results using MILC configurations
- Based on moments of 2pt correlators and high order continuum perturbation theory
- arXiv:1004.4285

Weak Matrix Elements

- For extraction of CKM matrix elements from experimental results lack of knowledge of hadronic matrix element often limits precision of matrix element.
- Lattice QCD provides a way to calculate leptonic decay constants and semi-leptonic form factors, and it is essential to produce high precision, reliable results.
- Precision flavor physics is a powerful way to study BSM physics.
 - see Buras: arXiv:1012.1447 for a pedagogic discussion
- Time is short, so we only look at a few results
 - see Della Morte, Gamiz, Heitger, Shigemitsu, Na, ...

Relevant Decays

$$egin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \ \pi
ightarrow l
u \end{pmatrix} egin{pmatrix} \mathbf{V_{d}} & \mathbf{V_{d}} & \mathbf{V_{d}} \ K
ightarrow l
u \end{pmatrix} egin{pmatrix} \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \ D
ightarrow \pi l
u & D
ightarrow K l
u \end{pmatrix} egin{pmatrix} B
ightarrow D^{(*)} l
u \end{pmatrix} egin{pmatrix} \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}} \ \langle B_d | \overline{B}_d
angle & \langle B_s | \overline{B}_s
angle \end{pmatrix}$$

Kaon Decay Constant

- ratio of f_K to f_{π} can be used to extract V_{us} (Marciano)
- results below MILC (Lattice10) preliminary (Bernard talk)
- world averages:
 - FlaviaNet: 1.193(6)
 - LLV: 1.1925(56)

$$f_K = 156.1 \pm 0.4 \begin{pmatrix} +0.6 \\ -0.9 \end{pmatrix} \text{ MeV}$$

$$f_K/f_{\pi} = 1.197(2) \begin{pmatrix} +3 \\ -7 \end{pmatrix}$$

$$V_{us} = 0.2247 \begin{pmatrix} +14 \\ -9 \end{pmatrix}$$

Charm, Bottom Decay Constants

- Lattice calculations of charm decay constants can be tested by experiment.
- Initial results of FNAL/MILC's calculations were considered a successful prediction of lattice QCD, when tested by CLEO-c.
- Both experimentalists and theorists have worked to improve precision of comparison.
- Situation got very interesting for f_{Ds} a few years ago...
 - no smoking gun for new physics now

summary plot from Shigemitsu CKM2010

• ETMC result is for N_f=2, but N_f=2+1+1 is coming

summary plot from Shigemitsu CKM2010

- ETMC result is for N_f=2, but N_f=2+1+1 is coming
- No experimental comparison

D semileptonic decays

- D semileptonic decay to K and π plus Iv are both under active study
- HPQCD has recently improved result for K final state
- Reviewed by Heechang Na at CKM 2010. Also see talk at Lattice 2010.

$f_{+}^{K}(q^{2}=0)$

- Several improvements have allowed a greatly reduced error by HPQCD.
- Nice agreement with experiment assuming CKM unitarity.
- From Na at CKM2010

IV_{cs}I

- Here Na (CKKM2010) displays value of IV_{cs}I
- Value is in good agreement with assumption of CKM unitarity
- Clearly error much improved. Previously about 10%.

$B \Rightarrow D^*/V$

FNAL/MILC result presented by Mackenzie at CKM2010

- Improved statistics and kappa tuning result in an improved value for IV_{cb}I. (first error is from expt, second from lattice calculation)
 - 2008: 38.9(7)(1.0) 10⁻³
 - 2010: 39.7(7)(7) 10⁻³
- Value from inclusive decays is 41.7(7) 10-3.
- Difference between two determinations reduced from 2.6 σ to 1.6 σ .
- Further reduction of error is expected with additional ensembles.

Computing

USQCD

- Lattice QCD Computing Project
 - BNL: QCDOC, BlueGene Q(?)
 - FNAL, JLab: clusters, GPUs
- A New Kind of User
 - Approximately 100 scientists have logins at the three labs
- INCITE: ALCF (Intrepid, Mira); ONRL (Jaguar, Kraken)

FNAL

- Kaon: 2400 cores;
 DDR Infiniband
- J/ψ: 6848 cores; DDR
 Infiniband
- Ds: 7840+5632 cores;
 QCD Infiniband
- GPU: 128 GPUs (coming soon)

GPU computing

- Need many parallel threads (10Ks); little branching
- Very unbalanced architecture:
 - high bandwidth to GPU memory (150 GB/s); but not compared to FP power (500-1000 GF/s)
 - internode communication is slow because of extra hops, but should improve in future (GPU Direct)
- QUDA software designed for QCD can partition lattice by cutting in all 4 directions enabling scaling to O(100) GPUs

Scaling with Staggered Quarks

- 64³ X 192 lattice
- Mixed precision multimass solver
- Achieving over 4
 TFlops on 256 GPUs

Thank You!