LSND/MiniBooNE excess events and heavy neutrino decays

S.N. Gninenko Institute for Nuclear Research Moscow

Short-Baseline Neutrino Workshop FNAL, May 12–14, 2011

Plan:

- LSND/ KARMEN $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ results vs radiative decay of heavy neutrino $\nu_{h} \rightarrow \gamma \nu$
- MiniBooNE \underline{v}_{μ} excess events and $v_{h} \rightarrow \gamma v$ decays
- MiniBooNE v_{μ} excess events and $v_{h} \rightarrow \gamma v$ decays
- Constraints on v_h
- Searches for v_h with future experiments
- Summary

S.G., arXiv:1009.5536; 1101.4004.

LSND excess events

800 MeV proton beam from

- LSND experiment (1993-98)
 - 1.8 E23 POT, 167 t LSc
 - L = 30m, 20 $< E_v < 53 MeV$
- pion decays at rest:

$$\begin{array}{c} \pi^{+} \rightarrow \mu^{+} v_{\mu} \\ \rightarrow \mu^{+} \rightarrow e^{+} v \overline{v}_{\mu} \\ \rightarrow \overline{v}_{e} \end{array}$$

• oscillation signature: e^+ - delayed γ pair $v_e p \rightarrow e^+ n$ $\rightarrow n p \rightarrow d \gamma (2.2 MeV)$

excess $87.9 \pm 22.4 \pm 6.0$ ev's, 3.8σ osc.prob. (2.64 ± 0.67 ± 0.45) x 10⁻³

KARMEN : no evidence for excess

- KARMEN (1997-2001)
- 5.9 E22 POT, 56 t LSc
- L = 17 m and 16 < $E_{\rm v}{<}$ 50 MeV
- observed excess of v_e : 10 ± 32 events.
- oscillation probability of
 < 8.5 x10⁻⁴ 90% CL

no evidence for oscillation.

Origin of LSND excess

Why no excess in KARMEN?

New weakly interacting particle v_h :

- produced in v_{μ} NC interactions
- low mass $v_h > \sim 40 \text{ MeV} \text{ too heavy for KARMEN}$
- high mass $v_{\rm h}^{-} < \sim 80$ MeV too heavy for LSND
- lifetime $< \sim 10$ ns to decay mostly in LSND fiducial volume
- decays dominantly $v_h \rightarrow \gamma v$

Usefull assumption: v_h is a component of v_{μ}

- muonic mixing $|U_{\mu h}|^2$
- → could be produced in v_{μ} CC int.
- → could be seen in μ , K, D,..decays
- decay rapidly due to, e.g. transition magnetic moment (not exotic at all)

- → γ -angular distribution in v_h rest frame: 1+a cos(Θ_{γ})
- → Majorana v: a=0; Dirac v: $-1 \le a \le 1$.

Monte Carlo spectra of neutron kinetic energy in $\nu_{\mu}{}^{+12}\text{C} \rightarrow n{}^{+}X{}^{+}\nu_{h}$

Cross section: $\sigma(v_{\mu}^{12}C \rightarrow v_{h}nX) \sim \sigma(v_{\mu}^{12}C \rightarrow v_{\mu}nX) \times |U_{\mu h}|^{2} \times F_{ph.s}$ C.J. Horovitz et al. PRC 48,3078(1993); M.C. Martinez et al. PRC 73,024607(2006); G.Garvey et al, PRC 48,1919(1993); E. Kolbe et al., PRC 52, 3437 (1995).

- Fermi momentum ~200 MeV/c
- No nuclear effects (n-rescatt., nucl. levels,..)

n cooling:

- $E_n < 5$ MeV at ~25 cm
- Time << n cupture time
- Fraction of high energy secondary n (> 20 MeV) < 2%

Discriminate between n's from $v_{\mu}^{12}C \rightarrow nXv_{h}$ and $v_{\underline{e}} p \rightarrow e^{+} n$ is not simple in LSND: the e+ γ tags are identical for both reactions

LSND v_{μ} excess vs E_{vis} and $\cos\Theta_{\gamma\nu}$ $|U_{\mu h}|^2 = 3 \times 10^{-3}$, $\tau = 10^{-9}$ s

LSND parameter space

Expected number of $v_h \rightarrow \gamma v$ events in LSND:

$$\Delta N_{\nu_h \to \gamma\nu} \simeq A \int \Phi_{\nu_\mu} \sigma_{\nu_\mu} |U_{\mu h}|^2 f_\gamma f_n f_{phs} P_{dec} P_{abs} \epsilon_\gamma dE$$

- $\sim 40 \text{ MeV} \le \text{m}_{h} \le 80 \text{ MeV}$
- $\sim 10^{-3} \le |U_{\mu h}|^2 \le 10^{-2}$
- $\tau \leq \sim 10^{-8} \mathrm{s}$

Cross check with LSND oscillation signal

- A=7.4x10³⁰
- $\Phi = 1.26 \times 10^{14} \, v/cm^2$
- $\sigma = .95 \times 10^{-40} \, \text{cm}^2$
- $f_e = 0.9$, $\epsilon = 0.42$
- $\Delta N_{osc} = 70$ events $P_{osc} \sim 2.64 \times 10^{-3}$ for to be compared with observed excess $87.9 \pm 22.4 \pm 6.0$ events

MiniBooNE

- designed to test LSND
- L/E same as LSND, different systematics, energy, event signature
- LSND E~30 MeV, L~30 m, L/E~ 1 MiniBooNE E~500 MeV, L~500 m, L/E~ 1
- Search for $v_{\mu} \rightarrow v_{e}$ appearance
- Search for $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ appearance

- > 475 MeV good agreement with background 408 events vs 386 ± 20(stat) ±30(syst) expected
- < 475 MeV 544 events vs 415 ± 20(stat) ±39(syst) expected

Excess $\Delta N=129.0\pm43.0$ $\approx 3 \sigma$

- → track events : either electrons, or $\gamma \rightarrow e+e$ pairs
- → reconstructed v_{μ} energy 200< E^{QE}< 475 MeV
- \rightarrow reconstructed visible energy 200< E_{vis}< 400 MeV
- angular distrubution is wide, consistent with $v_e QE$
- \rightarrow shape inconsistent with 2v oscillation interpretation of LSND

radiative decay of heavy neutrino $v_h \rightarrow \gamma v$

 v_h interpretation of v_{μ} excess vs $E_{OE} |U_{\mu h}|^2 = 3x 10^{-3}$, $\tau = 10^{-9}$ s

13

v_h interpretation of v_μ excess vs E_{vis} and $\cos\Theta_{\gamma v}$

 $|U_{ub}|^2 = 3 \times 10^{-3}$. $\tau = 10^{-9}$ s

MiniBooNE antineutrino excess events (5.66E20 POT)

Phys. Rev. Lett.105, 181801 (2010)

- > 475 MeV, 120 events vs 99 \pm 10(stat) \pm 10(syst) expected: 20.9 \pm 14 ev
- < 475 MeV, 119 events vs 100 \pm 10(stat) \pm 10(syst) expected:18.5 \pm 14 ev

Excess $\Delta N = 43.2 \pm 22.5 \approx 2 \sigma$

- → track events : either electrons, or $\gamma \rightarrow e^+e^-$ pairs
- → reconstructed v_{μ} energy 200< E^{QE}< 800 MeV
- \rightarrow reconstructed visible energy 200< E_{vis}< 700 MeV
- → angular distrubution is wide, consistent with $v_e QE$
- \rightarrow shape >475 MeV consistent with 2v oscillation interpretation of LSND

$v_{\rm h}$ interpretation of \overline{v}_{μ} excess vs $E_{\rm vis}$ and $\cos\Theta_{\nu\nu}$

γ

Combined LSND-MiniBooNE parameter window

Are these values consistent with the results of previous measurements ?

Experimental constraints on $|U_{\mu h}|^2$

- Two-body decays of pions and kaons, e- μ universality tests....(PSI, KEK, CERN)
- Muon processes: Michel spectrum (TWIST), G_F (MuLan), rad./rare muon decays
- Neutrino experiments $v_h \rightarrow e+e-v$: CHARM, NOMAD, NuTeV, PS191, BEBC,...
- LEP Z->νν* -> ννγ: ALEPH, DELPHI
- Cosmology, astrophysics

All consistent with LSND-MiniBooNE values

Some tension with radiative muon capture on hydrogen, but can be relaxed e.g. for a bit longer lifetime, or with other suggestions. McKeen, Pospelov PRD 82, 113018 (2010); S.G.,arXive:1011.5560. Most sensitive limits on $|U_{\mu h}|^2$ vs v_h mass

Big Surprise! for ~40 MeV \le m $_{\rm h} \le$ 80 MeV no constraints on $|U_{\mu \rm h}|^2$ PS191 limits are evaded for ~40 MeV \le m $_{\rm h} \le$ 80 MeV due to prompt $v_{\rm h} \rightarrow \gamma v$ decay and low mass target

Search for v_h in K_{u2} decays at KEK

K⁺ BEAM 550 MeV/c Neutrino Mass (MeV/c²) 200 150 100 0 300 250 C TYPE 107 MAGNET YOKE Vu 1 LEAD SHIELD $\pi^+\pi^0$ 106 10-1 82 AGNET POLE 80^{cm} x 150^{cm} AČ SHIELD 105 GAP 21cm 10-2 MWPC 10 kG MWPC2 Without NaI Vet 104 Events per Mev/c 10-3 ANTI SCATTERING COUNTERS COPPER DEGRADER AT POLE FACE 103 10-4 COI TARGET H+27 + 11+11 MWPC1 e⁺v 10² With Nal MWPC3 10⁻⁵ Nal (TI) COUNTERS 10 10^{-6} MWPC4 Acceptance B6 1 TOF COUNTERS 2.3 2.5 31 0.1 140 180 220 260 100 ACRYL DEGRADER RANGE COUNTERS Momentum (MeV/c) m= 40 MeV m=0 MeV. 236 MeV/c 234 MeV/c

R.S.Hayano et al. PRL 49,1305 (1982)

- good muon mom. resolution for peak from K -> $\mu v_h \sim 1 \%$ (FWHM)
- poor hemiticity: high continues backg. level from K -> $\mu v \gamma$ decay
- ECAL self- γ -veto due to prompt v_{h} decay

IRON

MeV/c

Partial Decay Rate per

Searches for $v_h \rightarrow \gamma v$ with future experiments

- direct test in $v_{\mu}NC$ interactions: $v_{\mu} + A \rightarrow v_{h}(\rightarrow v\gamma) + X$
- muon decay at rest: $\mu \rightarrow e\nu + \nu_h \rightarrow e\nu + \nu\gamma$
- K decays in flight /at rest: $K \rightarrow \mu + \nu_h \rightarrow \mu + \nu_\gamma$
- atmospheric neutrino telescopes, Masip, Masjuan, arXiv:1103.0689

- detector: two D1 and D2 parts D1: v_{μ} NC shower dump +primary vertex D2, e.g. a'la NOMAD: good particle ID, secondary vertex, ...
- $v_h \rightarrow v\gamma$ signature:single e+e-pair, L >> λ_{in}
- advantages to search for short T : v_h decay length ~ E absorption length ~ ln(E)
- disadvant. : e+e- efficency drops with E

Background for single γ events

- π^0 decays
- K0 decays in flight
- neutron reactions
- coherent π^0/γ production

Fig. 2. Schematic of the DC tracker and a coherent π^0 event candidate in NOMAD where both photons from the π^0 decay convert in the DC's. The rod crosses represent drift chamber digitizations that are used in the track-reconstruction, whereas the black ones are not. The upstream ($\gamma 1$) and downstream ($\gamma 2$) momentum vectors when extrapolated upstream intersect within the falucial volume.

Search for e+e- excess from $v_{\mu}A \rightarrow v_{h}(\rightarrow \gamma \nu) X$ $\rightarrow e+e-$ in NOMAD

TOP VIEW of neutrino cave

No primary vertex ID. Rate of single γ from coherent π^0/γ production?

Very preliminary limits

Work in progress. Analysis of NOMAD data (4.1E19 POT) on search for v_{τ} - v_{h} mixing, PLB 506 (2001) 27; 527(2002)23

New results on a search for a 33.9 MeV/ c^2 neutral particle π^+ decay in the NOMAD experiment

NOMAD Collaboration

Abstract

We report on a direct search in NOMAD for a new 33.9 MeV/ c^2 neutral particle (X) produced in pion decay in flight, $\pi \rightarrow \mu X$ followed by the decay $X \rightarrow v e^+ e^-$. Both decays are postulated to occur to explain the time anomaly observed by the KARMEN experiment. From the analysis of the data collected during the 1996–1998 runs with 4.1 × 10¹⁹ protons on target, a single candidate event consistent with background expectations was found. The search is sensitive to a pion branching ratio BR($\pi \rightarrow \mu X$) > 3.7 × 10⁻¹⁵, significantly smaller than previous experimental limits. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Neutrino mixing; Neutrino decay

Search for $K \rightarrow \mu + \nu_h \rightarrow \mu + \gamma \nu \rightarrow e + e - in NOMAD$

Flux K/ π ~0.1 <E_v > ratio ~73/24.3

Expected limit $|U_{\mu h}|^2 < \sim A \exp(B/T)$ very sensitive to T

Preliminary $|U_{\mu h}|^2 > 10^{-3}$, for $\sim 0.3 \times 10^{-9} < \tau < \sim 10^{-9}$ could be excluded

- $v_h \rightarrow v\gamma$ signature: stop $(\pi + \mu)(or K + \mu) \times ECAL1 \times ECAL2$
- expected sensitivity: $|U_{\mu h}|^2 \sim 10^{-8} \exp(0.3/\tau [ns])$
- muon rate $\sim 3 \times 10^4 / \text{s}$, running time $\sim 1 \text{ m}$
- PIBETA (PSI) excess in $\mu \rightarrow evv\gamma$ to be checked!

Search for $\mu \rightarrow ev + v_h \rightarrow ev + v\gamma$ with stop cosmic muons. ICARUS

0.6 m

suggested by a PRD referee of arxiVe:1101.4004

Radiative μ -decay:

- small angle θ_{ev} ,
- energy spectrum $N_{\gamma} \sim 1/E_{\gamma}$

Signature of (e- γ) excess from $\mu \rightarrow e\nu + \nu_h \rightarrow e\nu + \nu\gamma$

- large angle $\theta_{e\gamma}$,
- $L > L_C$
- $E_{\gamma} > E_0$

Search for $\mu \rightarrow ev + v \rightarrow ev + v\gamma$ with stop cosmic μ in MiniB.?

0.9 m

Search for v_h in K decays in flight at NA62 at CERN

3 possible signatures

 μ -peak from K -> $\mu v_{\rm h}$ good muon mom. resolution + high eff. gamma veto for $K \rightarrow \mu \nu \gamma$; $\mu \pi^0 \gamma$... decays.

• secondary vertex from $V_h \rightarrow v\gamma$ good photon directionallity

• single μ x ECAL=0 x HCAL >0 good hermiticity required.

SUMMARY

• heavy sterile v_h 's: ~40 MeV $\le m_h \le 80$ MeV, ~ $10^{-3} \le |U_{\mu h}|^2 \le 10^{-2}$, ~ $10^{-11} \le \tau \le 10^{-9}$ s

could reconcile LSND, KARMEN and MiniBooNe puzzling results.

- explain excess events in LSND,
- no excess in KARMEN,
- excess events in $v_{\mu} / \overline{v}_{\mu}$ MiniBooNE,
- provide distributions consistent with observations.
- existing constraints on $\nu_{\rm h}$ are consistent with LSND-MiniB. values.
- - v_h is too heavy for π decays, too light for K decays -escapes in v experiments due to dominant $v_h \rightarrow \gamma v$ decay
- searches for ν_h in ν_μ NC, $\mu,$ and K experiments are complementary to current efforts to clarify LSND/MiniB anomalies.
- (dis)prove v_h interpretation of LSND/MiniBooNE excess
- close the $IU_{\mu\,h}I^2$ gap for $m_h^{}\sim\!40^{}-80~MeV$

Backup Slides

LSND, KARMEN, MiniBooNE

Experiment	Event excess	Energy range, MeV	Background
LSND, ν_{μ} 1.8E23 POT	87.9±22.4±6.0 <mark>3.8 σ</mark>	20–60	53.8
KARMEN, ν_{μ} 5.9E22 POT	10±32 No excess	16–50	15.8±0.5
MiniBooNE, ν_{μ} 6.64E20 POT	129.0±43.0, <mark>≈3 σ</mark> 22.1 ± 35.7	200–475 475–1250	415.2±43 386.0±35.7
MiniBooNE, ν_{μ} 5.66E20 POT	43.2±22.5 , <mark>≈2 σ</mark> 18.5±14.3, 1.3 σ 20.9±13.9, 1.5 σ	200–1250 200–475 475–1250	233.8±22.5 105±14.3 99.1±13.9