MiniBooNE and BooNE

Geoffrey Mills Los Alamos National Laboratory SBNP Workshop 12 May, 2011

- MiniBooNE Appearance Results
- Other Anomalies
- . Resolution: The BooNE Proposal
- 🧢 Conclusions 🕫

Synopsis:

- A number of anomalies are appearing in neutrino data in the region of $\Delta m^2 \sim$ an eV²
- Predominantly from single detector experiments...
- There is some possibility that the effects are due to oscillations between sterile neutrinos and active neutrinos
- A definitive experiment is warranted
- BooNE would be such an experiment

Motivation....

Anomalies in Neutrino Data

Motivation....

Excess Events from LSND still remain:

KARMEN at a distance of 17 meters saw no evidence for oscillations \rightarrow low Δm^2

Reactor Anomaly in $\overline{\nu}_e$ Data

 Inclusion of new beta decay estimates in reactor flux calculations Increases expected flux 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Best fit: 0.943 ± 0.023 P_{osc} ~10%, Δm^{2} ~1 eV² ROVNO88_3S ±0.008 ±0.068 0.938 18.2 m ROVNO88_2S ±0.009 ±0.075 H 0.959 ±0.009 ±0.076 ROVNO88_1S 0.972 18.2 m ±0.009 ±0.065 **ROVNO88_21** 0.948 18.0 m 0.917 ±0.008 ±0.063 **ROVNO88_11** 1 dof $\Delta \chi^2$ profile 18.0 m 10 SRP-II 23.8 m ±0.010 ±0.038 1.019 90.00 % ±0.006 ±0.035 SRP-I 18.2 m 0.953 $\Delta\chi^2$ 95.00 % 5 0.954 ±0.010 ±0.046 Krasnoyarsk-III 99.00 % ±0.190 ±0.053 Krasnoyarsk-II 10² 0.960 2 dof $\Delta \chi^2$ contou -----±0.034 ±0.052 Krasnovarsk-I 0.944 ±0.059 ±0.048 ILL 8.76 m 0.801 10¹ ±0.043 ±0.055 Goesgen-III 0.924 Δm^2_{new} (eV²) Goesgen-II ±0.024 ±0.059 0.991 dof $\Delta \chi^2$ Goesgen-I ±0.023 ±0.058 0.966 10⁰ profile ±0.115 ±0.044 Bugey3 95.0 m 0.873 ±0.009 ±0.047 Bugey3 0.948 Bugey-3/4 ±0.004 ±0.047 0.943 10 ±0.023 ±0.028 ROVNO91 0.940 ±0.000 ±0.028 Bugey-3/4 0.943 + .2 τ_n=885.7s Average 10 0.943 ±0.022 10⁻¹ 10⁻³ ^{3 4 5 6 7 8} 10⁻² 5 Δχ² 4 5 6 7 8 3 4 5 6 7 8 [°]10 10 sin²(20 11111 ้ทยพ่ 0.6 0.9 0.7 0.8 1 1.1 1.2 1.3 1.4

 $v_{Measured}$ / $v_{Expected}$

Gallium Source Anomaly in v_e Data

 \bullet Observed too few $v_{\rm e}$ interactions observed from an electron capture source

Can the anomalies be due to a more complicated oscillation picture?

- Sterile neutrino models
 - → 3+2 → next minimal extension to 3+1 models

•2 independent ∆m²
•4 mixing parameters
•1 Dirac CP phase which allows difference between neutrinos and antineutrinos

Oscillation probability:

$$P(\stackrel{(-)}{v_{\mu}} \rightarrow \stackrel{(-)}{v_{e}}) = 4|U_{\mu4}|^{2}|U_{e4}|^{2}\sin^{2}x_{41} + 4|U_{\mu5}|^{2}|U_{e5}|^{2}\sin^{2}x_{51} + 8|U_{\mu5}||U_{e5}||U_{u4}||U_{e4}|\sin x_{41}\sin x_{51}\cos(x_{54}\pm\varphi_{45})$$

$$\Delta m_{\overline{v}}^2 = \Delta m_v^2$$

0

Motivation....

Cosmology Fits for the Number of Sterile Neutrinos

 $N_s = 1.6 \pm 0.9$

Hamann, Hannestad, Raffelt, Tamborra, Wong, PRL 105 (2010) 181301

• BBN:

 $N_s = 0.64 \pm 0.4$

Izotov, Thuan, ApJL 710 (2010) L67

Motivation....

MiniBooNE Data

MiniBooNE looks for an excess of electron neutrino events in a predominantly muon neutrino beam

Data stability

• Very stable throughout the run

 $v/POT \times 10^{-17}$

160

140

120

100

Meson production at the Proton Target

- MiniBooNE members joined the HARP collaboration
 - 8 GeV proton beam
 - 5% Beryllium target
- Spline fits were used to parameterize the data.

- Kaon data taken on multiple targets in 10-24 GeV range
- Fit to world data using Feynman scaling
- 30% overall uncertainty assessed

Separating muon-like and electron-like events by using a likelihood ratio technique

 $log(L_e/L_m)>0$ favors electron-like hypothesis

Note: photon conversions are electron-like. This does not separate e/π^0 .

Separation is clean at high energies where muon-like events are long.

Analysis cut was chosen to maximize the $v_{\mu} \rightarrow v_{e}$ sensitivity

Reconstruction of NC π^0 events

Data plotted vs L/E

5.66×10²⁰ POT (> 1×10²¹ to date)

Direct MiniBooNE-LSND Comparison of $\overline{\nu}$ Data

Antineutrino mode MB results Full Energy Range

- Results for **5.66E20 POT**
- Maximum likelihood fit in simple 2 neutrino model
- Null excluded at 99.5% with respect to the two neutrino oscillation fit

Conclusions (I)

- Significant ν_e (~3 σ) and $\overline{\nu}_e$ (~2.75 σ) excesses above background are emerging in both neutrino mode and antineutrino mode in MiniBooNE
- Antineutrino mode: statistical errors dominate (more data?)
- MiniBooNE plans has now accumulated > 10²¹ protons on target in anti-neutrino mode and we hope to release results this summer
- Difficulties remain:
 - Cannot determine whether excesses are due to an oscillation phenomena because MiniBooNE has only one detector
 - Need to vary E and L

Long-Baseline News, May 2010:

" *** LSND effect rises from the dead... "

BooNE

A Letter of Intent to Build a MiniBooNE Near Detector:BooNE

October 12, 2009

I. Stancu University of Alabama, Tuscaloosa, AL 35487

Z. Djurcic Argonne National Laboratory, Argonne, IL 60439

D. Smith Embry-Riddle Aeronautical University, Prescott, AZ 86301

R. Ford, T. Kobilarcik, W. Marsh, & C. D. Moore Fermi National Accelerator Laboratory, Batavia, IL 60510

> J. Grange, B. Osmanov, & H. Ray University of Florida, Gainesville, FL 32611

G. T. Garvey, J. A. Green, W. C. Louis, C. Mauger, G. B. Mills, Z. Pavlovic, R. Van de Water, D. H. White, & G. P. Zeller Los Alamos National Laboratory, Los Alamos, NM 87545

> W. Metcalf Louisiana State University, Baton Rouge, LA 70803

B. P. Roe University of Michigan, Ann Arbor, MI 48109

A. A. Aguilar-Arevalo Instituto de Ciencias Nucleares, Universidad Nacional Autnoma de México, México D.F. México

arXiv:0910.2698v1 [hep-ex] 14 Oct 2009

BooNE

➤Cloning a MiniBooNE detector for ~200m

- Letter of Intent: arXiv:0910.2698
- Accumulate a sufficient data sample in < 1 year</p>
- will dramatically reduce errors in neutrino mode, the 3σ low energy excess has a ~ 6σ significance with statistical errors only.
- Many short runs for checking systematic effects would be possible, as was done for MINOS (e.g. 25 meter absorber, different horn currents).

New Location at 200 meters from BNB Target

Neutrino Fluxes at Near and Far Locations

Far to Near Neutrino Flux Ratios at 200 m

v_{μ} Charged Current Event Rates Near and Far

Background prediction \overline{v} mode

26

v_e Background Uncertainties

Uncertainty (%)	200-475MeV	475-1100MeV
π*	0.4	0.9
π	3	2.3
K ⁺	2.2	4.7
K-	0.5	1.2
K ⁰	1.7	5.4
Target and beam models	1.7	3
Cross sections	6.5	13
NC π^0 yield	1.5	1.3
Hadronic interactions	0.4	0.2
Dirt	1.6	0.7
Electronics & DAQ model	7	2
Optical Model	8	3.7
Total	13.4%	16.0%

- Unconstrained $\overline{\nu}_{e}$ background uncertainties
- Biggest contributors:
 - Detector response
 - Cross sections

(\overline{v}_{μ} constrained error ~10%)

BooNE Performance

- Use full MiniBooNE sensitivity machinery
 - Use identical detector response (fully correlated errors)
 - > 1×10²⁰ POT per mode (2 × 0.5 years at current rates)
 - Reweight MC events for fluxes at 200 meters
 - Full oscillation analysis package applied

Sensitivity with Near/Far Comparison

Sensitivity with Near/Far Comparison Anti-nu Mode

Neutrino Disappearance Sensitivity with Detector at 200 Meters

Antineutrino Disappearance Sensitivity with Detector at 200 Meters

Conclusions and Outlook

- Significant ν_e (3 σ) and $\overline{\nu}_e$ (2.75 σ) excesses above background are emerging in both neutrino mode and antineutrino mode in MiniBooNE
 - The two modes do not appear to be consistent with a simple two flavor neutrino model
 - Neutrino mode systematic errors dominate (near detector?)
 - Antineutrino mode statistical errors dominate (more data?)
 - MiniBooNE plans accumulate more data until the 2012 shutdown
- BooNE proposal:
 - Cloning or cannibalizing MiniBooNE at a near position following the $\overline{\nu}$ run
 - Cost ~ 10M\$ for new detector, 5M\$ reusing the existing MiniBooNE detector.
 - Data can be accumulated in < 1 yr at present proton delivery rates

Benchmark Reaction: Charged Current Quasi Elastic (CCQE)

Normalizes our (flux × cross section)

We adjust the parameters of a Fermi Gas model to match our observed Q^2 Distribution.

Fermi Gas Model describes CCQE n_m data well $M_{A,eff} = 1.23 + 0.20$ GeV $\varkappa = 1.019 + 0.011$ Also used to model v_e and $\overline{v_e}$ interactions

Antineutrino mode events

MiniBooNE Detects Cherenkov Light Pattern of Cerenkov Light Gives Event Type

The most important types of neutrino events in the oscillation search:

Antineutrino mode MB results for E>475 MeV

(E>475 avoids question of low energy excess in nu-mode)

- Results for **5.66E20 POT**
- Maximum likelihood fit for simple two neutrino model
- Null excluded at 99.4% with respect to the two neutrino oscillation fit.

Direct MiniBooNE-LSND Comparison of \overline{v} Data

Near/Far Sensitivity for Several Distances

- 150 m : 0.6×10²⁰ POT
- 200 m : 1.0×10²⁰ POT
- 250 m : 1.5×10²⁰ POT
- 300 m : 2.0×10²⁰ POT

•Near/Far comparison relatively insensitive to detector distance for roughly the same number of events

> 200 meters gives similar flux shapes

