Coherent Elastic Neutral Current Neutrino Nucleus Scattering Measurement at Fermilab

Short Baseline Neutrino Workshop 14 May 2011

- Coherent Elastic Neutral Current Neutrino Nucleus Scattering (Coherent-NCvAS)
- Dark Matter
- Neutrino Sources for the coherent-NCvAS
- Detector R&D at Fermilab
- Summary

Coherent-NCvAS

The first prediction of Coherent-NCvAS

The first convincing evidence of neutral current from CERN (1973)

 $\bar{\nu}_{\mu} + e \longrightarrow \bar{\nu}_{\mu} + e$

Coherent Elastic Neutral Current Neutrino Nucleus Scattering

A straightforward calculation given the existence of weak neutral current

Coherent-NCvAS

$$\mathcal{L}_{eff} = \frac{G_F}{\sqrt{2}} l^\mu j_\mu$$

Cross section for zero-momentum transfer limit

$$\sigma_{\nu N} \simeq \frac{4}{\pi} E_{\nu}^{2} \left[Z \omega_{p} + (A - Z) \omega_{n} \right]^{2}$$
$$g(Z_{0}u) = \frac{1}{4} - \frac{2}{3} \sin^{2} \theta_{W}, \quad g(Z_{0}d) = -\frac{1}{4} + \frac{1}{3} \sin^{2} \theta_{W}$$
$$\omega_{p} = \frac{G_{F}}{4} (4 \sin^{2} \theta_{W} - 1), \quad \omega_{n} = \frac{G_{F}}{4}$$

Differential cross section for finite momentum transfer

$$\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[(1 - 4\sin^2\theta_w) Z - (A - Z) \right]^2 M \left(1 - \frac{ME}{2E_\nu^2} \right) F(Q^2)^2$$

Requirements of the coherent-NCvAS

For most of the detector target nucleus, the coherence condition is fulfilled by neutrino energy of

$$E_{\nu} < \frac{1}{R_N} \simeq 50 \text{ MeV}$$

$$E_{max} \simeq \frac{2E_{\nu}^2}{M} \simeq \mathcal{O}(100) \text{ keV}$$

Coherent-NCvAS cross section at these energy (~50MeV)

$$\sigma_{\nu N} \simeq 10^{-39} \mathrm{cm}^2$$

cf) v-N charged current : 10^{-40} cm² v-e elastic scattering : 10^{-43} cm²

Requires a ton-scale detector with ~10 keV energy threshold

$$R \simeq \mathcal{O}(10^3) \left(\frac{\sigma}{10^{-39} cm^2}\right) \times \left(\frac{\Phi}{10^{13} \nu / y ear / cm^2}\right) \times \left(\frac{M}{ton}\right) events / y ear$$

Recent innovation of Dark Matter detector technology makes it possible to access coherent-NCvAS

Dark Matter

Dark Matter

- We know that the Dark Matter is stable / non-baryonic / nonrelativistic / interacts gravitationally
- We don't know what it actually is: mass / coupling / spin / composition / distribution in the Universe ...
- Cosmology suggests to probe EW scale $\Omega_{DM} \sim < \sigma_A v >^{-1}$ $\sigma_A = \alpha^2 / M^2_{EW}$
- SUSY model provides electroweak scale stable neutral particle
- However Dark Matter is not necessarily a SUSY particle.

Dark Matter Distribution

Direct Detection of Dark Matter

Sensitivity of Dark Matter Search

- Supersymmetric model predictions are not the major motivation of dark matter search experiments.
- The CMSSM models in the dark matter search sensitivity plots are more or less a wall paper.
- There are strong fundamental bounds in the generic WIMP search parameter space that we can probe within our generation.

Universe Over-close

Irreducible Backgrounds

Neutrinos from Astrophysical Origin

Irreducible Backgrounds

- Coherent scattering of atmospheric neutrino is an irreducible background in the future O(10 ton) scale dark matter experiments (see Strigari, arXiv:0903.3630)
- What about the inelastic interaction tail by high energy neutrinos?

Sensitivity of Dark Matter detectors will be saturated out by irreducible neutrino backgrounds: No zero-background experiments

Neutrino Sources for Coherent-NCvAS

Reactor Neutrinos

$$E_{max} \simeq \frac{2E_{\nu}^2}{M} < \text{keV}$$

 $\Phi = 10^{20} \bar{\nu_e} / sec / 4\pi R^2 \qquad (\Phi = 10^{12} \bar{\nu_e} / sec / cm^2 @ 20 \text{ m})$

- Ultra-clean, kg-size, ~10 eV threshold detector
- Need to overcome steady state backgrounds and detector noise
- Reactor off-time can be used for background subtraction
- Detector development is challenging for a realistic experiment

Neutrino Source from Stopping Pions

target)

- See **CLEAR** proposal : K. Scholberg *et al.*, hep-ex:0910.1989
- Spallation Neutron Source (SNS) at Oak Ridge National Lab F. Avignone and Y. Efremenko, J. Phys. G, 29 (2003) 2615-2628

16

150

50

100

Recoil Energy (keV)

Neutrino Sources at Fermilab

On-aXis Neutrinos

• NuMI Beam

1040m from the NuMI target with the horns separated by 10m and the target inside the first horn (LE), or retracted 1m (ME) or 2.5m (HE). (arXiv:0709.2737) Booster Beam

Total predicted flux at the MiniBooNE detector by neutrino species with horn in neutrino mode. (arXiv:0806.1449)

Neutrino energy of order GeV

- Too high energy for a pure coherent-NCvAS study (need below 50MeV)
- But possibly OK for low energy (<100 keV) neutrino scattering study

Off-aXis Neutrinos

- It is well known that the energy of neutrino beam is lower and narrower at the off-axis
- The neutrino energy is still order of GeV scale at small off-axis angle (see John Cooper's talk (2011-05-13) in this workshop)

Far-Off-aXis Neutrinos

Far-Off-aXis (FOX) Neutrinos

Beam MC Configuration

- Use standard Booster Beam MC
 - release stopping pion cuts in the original MC
- 8 GeV, 5Hz 5x10¹² Protons on Be target
 - 32 kW max power (NUMI beam on 8 kW)
- 173 kA horn current neutrino mode
- 20m from the target

Dominant neutrino production process at the Far-Off-aXis is pion decay at rest

 $\pi^+
ightarrow \mu^+ +
u_\mu$ E(v_µ) =29.9 MeV $\mu^+
ightarrow e^+ + \overline{
u}_\mu +
u_e$ delay = 2.2 µs

- Systematic uncertainties of the neutrino flux estimation should be checked in detail
 Beam correlated muons and neutrons at the
- detector site should be evaluated

 * v_e spectrum does not accurately follow the 3-body muon decay kinematics where the post-processing of Booster Beam MC does not apply in this low energy region. However the total flux should not be affected.

Expected Coherent-NCvAS Event Rates at FOX

If we believe the FOX Booster Beam MC results, a ton-scale single phase LAr detector will perform the first ever observation of the coherent-NCvAS at Fermilab

- 20m from the target
- Steady state background rejection factor ${\sim}10^{\text{-5}}$
- Use pulse shape discrimination of nuclear recoil (fast) and electron recoil (slow) signal in LAr (see Boulay and Hime: astro-ph/0411358)
- Well known detector technology (DEAP/CLEAN)
- Expected Event Rate in a single-phase 1-ton LAr detector: ~200evt/year (E_{th}> 30 keV) w/ full-power operation (w/ NUMI: ~50 evt/year)

Future of FOX neutrinos?

- \rightarrow see C.Polly's talk in this workshop as well (2011.05.14)
- \rightarrow Alternative options; see DAE δ ALUS J.Conard talk in this workshop (2011.05.14)

Detector R&D at Fermilab

Fermilab Noble Gas Detector R&D Facility

Fermilab Noble Gas Detector R&D Facility

Fermilab Noble Gas Detector R&D Facility

Prototype Detector Test Chamber

- Existing LAr test chamber system demonstrated 20ppt level of purity control on electronegative elements (H₂O and O₂)
- N₂ contamination above ~ppm in LAr is known to affect pulse shape discrimination of nuclear recoil events (see 2010 JINST 5 P06003 by WArP collaboration)
- The chamber will be used for PMT characterization and N_2 contamination control in ${\sim}300kg$ size of LAr
- Understand design issues of prototype detector

- Coherent-NCvAS has never been observed since its first prediction in 1974
- Dark Matter Search experiments will face irreducible coherent-NCvAS neutrino backgrounds. It will be interesting to study neutrino interactions at sub-MeV range of nuclear recoils.
- There is a well defined low energy (<50MeV) neutrino source at Fermilab which might be useful for coherent-NCvAS experiment.
- Further R&D within Project-X neutrino program (8GeV-0.3MW proton beam) can open up new endeavors and opportunities of future short baseline projects.
- Detector R&D efforts at Fermilab have just started.