T2K: First Results
 H. A. Tanaka (IPP/UBC)

Fermilab Short Baseline Neutrino Workshop

Motivation

$\theta_{13}:$

- Last unmeasured parameter in neutrino mixing matrix $\left(\sin ^{2} 2 \theta_{13}<0.15\right)$
- "Gate keeper" to CP violation in neutrino oscillations

Motivation

$\theta_{13}:$

- Last unmeasured parameter in neutrino mixing matrix $\left(\sin ^{2} 2 \theta_{13}<0.15\right)$
- "Gate keeper" to CP violation in neutrino oscillations

Atmospheric oscillation parameters $\theta_{23}, \Delta \mathrm{~m}^{2} 23$

- Maximal mixing $\left(\theta_{23}=45^{\circ}\right)$? Precision measurement needed
- possible clues to illuminate structure of neutrino mixing matrix

Motivation

"Tokai-to-Kamioka":

- high sensitivity search for $\nu_{\mu} \rightarrow v_{e}$ appearance due to θ_{13}
- high precision measurement of v_{μ} disappearance due to $\theta_{23}, \Delta \mathrm{~m}^{2}{ }_{23}$ by sending high intensity $\sim 600 \mathrm{MeV} \nu_{\mu}$ beam 295 km
- from Tokai (J-PARC)
- to Kamioka (Super Kamiokande detector)

~500 collaborators from 59 institutions 12 nations,

T2K

"Tokai-to-Kamioka":

- high sensitivity search for $v_{\mu} \rightarrow v_{e}$ appearance due to θ_{13}
- high precision measurement of v_{μ} disappearance due to $\theta_{23}, \Delta \mathrm{~m}^{2}{ }_{23}$
by sending high intensity E~600 MeV v_{μ} beam L=295 km
- from Tokai (J-PARC)
- to Kamioka (Super Kamiokande detector)

With known $\Delta \mathrm{m}^{2}$ values, chosen L/E maximizes oscillation probabilities

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \sim \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \times \sin ^{2} \Delta_{31} \quad \text { B. Kayser, NuSAG Mar } 2006 \\
& +\sin 2 \theta_{13} \cos \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \times \sin \Delta_{31} \sin \Delta_{21} \cos \left(\Delta_{32} \pm \delta\right) \\
& +\sin ^{2} 2 \theta_{12} \cos ^{2} \theta_{23} \cos ^{2} \theta_{13} \times \sin ^{2} \Delta_{21} \quad \Delta_{i j}=1.27 \Delta m_{i j}^{2}(L / E)
\end{aligned}
$$

$P\left(\nu_{\mu} \nrightarrow \nu_{\mu}\right) \sim \sin ^{2} 2 \theta_{23} \sin ^{2} \Delta_{23}$

Producing v_{μ} beam

Neutrino beam produced by π^{+}decays from 30 GeV protons from J-PARC Main Ring interacting on carbon target

Off-Axis Beam Concept

- Pions (and neutrinos) produced with wide energy spectrum

$$
\begin{aligned}
p(30 \mathrm{GeV})+\mathrm{C} \rightarrow & \pi^{+}+X \\
& \hookrightarrow \nu_{\mu}+\mu^{+}
\end{aligned}
$$

- Relativistic kinematics can be exploited to produce "narrow" band neutrino beam

- Tune angle to maximize flux at oscillation maximum
- Reduce high energy neutrinos

Neutrino Interactions

- At ~ 1 GeV, interactions dominated by "quasi-elastic"
- CC allows flavor-tagging (v_{e} vs. v_{μ})
- neutrino energy via lepton momentum
- Single pion production (CC and NC):
- misidentification as CCQE results in incorrect neutrino energy
- photons from $\pi^{0} \rightarrow \gamma+\gamma$ may be misidentified as electrons

Neutrino flux

Neutrino flux predicted by detailed MC simulation tuned with:

- Preliminary NA61 $\pi^{ \pm}$production data
- Other external data for K, hadron interaction cross sections.
- Measurements from beam monitors, neutrino beam direction.

On-axis: (INGRID)

"GRID" of neutrino detectors:

- Fe/Scintillator trackers
- event rate allows ~daily monitor of profile
- Measure center of beam with profile of interaction rate module-to-module
- Beam axis within 1 mrad of nominal

Off-axis detectors

 UA1 magnet 0.2 T Tracker: 3 TPC/2 FGD

ECAL

$\mathrm{Pb} / \mathrm{scintillator} \mathrm{tracking} \mathrm{calorimeter}$ for photon detection and $\mathrm{e} / \mu / \pi$ identification of tracks

P0D
scintillator/(brass/Pb) tracker optimized for π^{0} detection via photon shower identification

SMRD:
scintillator planes instrumenting magnet yoke for muon detection

Scintillation Detectors

Multi-pixel Photon Counter (MPPC)

- array of silicon photodiodes operated in in limited Geiger mode
- $1.3 \times 1.3 \mathrm{~mm}^{2}$ with 667 pixels
>50000 devices in first large scale use
MPPC coupled Cross section of to fibers
 scintillator bar

TPCs

3 Large volume TPCs with MicroMegas amplification/readout

- Ionization measurement for >3 σ separation between e/ μ
- <10\% momentum resolution at $\mathrm{p}=1 \mathrm{GeV} / \mathrm{c}$
- scale uncertainty < 2\%

Completed Product:

Event:

FGD1 FGD2 DSECAL

- High energy deep-inelastic scattering event with muon from upstream interaction

Beam Delivery

near detector

far detector

$v_{\mu} \mathrm{CC}$ interactions

Near detector "normalization" measurement corrects predicted far detector event rates

Observed rate relative to expectation is

$$
R=1.061 \pm 0.027(\text { stat })_{-0.038}^{+0.044}(\text { det. sys. }) \pm 0.039 \text { (phys. model) }
$$

Cherenkov Radiation

- EM radiation by charged particles with $v>C n$
- Detected by >10K photomultiplier tubes
- sensitive to single photons (40\% coverage)
- O(ns) time resolution
- Particle can be identified by ring profile
- "muon" vs. e/ γ (EM shower)

Signal/Background

$$
\nu_{\ell}+n \rightarrow \ell^{-}+p
$$

- CCQE appears as single μ or e ring
- E_{v} by energy/direction relative to beam.

$$
\nu_{\ell}+(n / p) \rightarrow \nu_{\ell}+(n / p)+\pi^{0}
$$

- Rings from $\pi^{0} \rightarrow \gamma+\gamma$ rejected via 2 -ring reconstruction and invariant mass cut
- π^{+}rejected by decay electron requirements

Event Selection

Far Detector Prediction:

beam simulation

Neutrino flux prediction

- external input (primary beam parameters, muon/neutrino profile, π / K measurements)
- MC accounts to simulate focussing, geometry.

Neutrino interaction model

- encapsulate accumulated knowledge of neutrino interactions data and modelling

Near Detector data:

- Correct prediction based on observed rate
neutrino event generator

$$
\begin{aligned}
& \nu_{\ell}+A \rightarrow \ell+X \\
& \nu_{\ell}+A \rightarrow \nu_{\ell}+X
\end{aligned}
$$

Systematic Uncertainties

Error source Signal (\%) Background (\%)

Normalization	1.4	1.4
Energy Scale	0.3	0.5
Ring counting	3.9	8.4
Muon PID	-	1.0
Electron PID	3.8	8.1
π^{0} mass cut	5.1	8.7
Decay electron	0.1	0.3
π^{0} rejection	-	5.9

- Far detector systematics determined from control samples (atmospheric neutrinos, "hybrid" π^{0}, etc.)
- Cross section uncertainties dominated by FSI and CCQE modelling

Error source	$\mathrm{N}^{\mathrm{BKG}} \mathrm{SK}^{(\%)}$	$\mathrm{N}_{\mathrm{ND}}(\%)$	$\mathrm{N}_{\mathrm{BKG}} \mathrm{SK}^{\mathrm{SK}} \mathrm{N}_{\mathrm{ND}}(\%)$
SK Efficiency	± 15.8	-	± 15.8
Cross Section	± 13.9	± 8.4	± 14.3
Beam Flux	± 18.1	± 19.8	± 8.9
ND efficiency	-	+5.6	${ }_{-5.2}^{+5.6}$
Overall Norm	-	-	± 2.7
Total	± 27.8	+22.2	${ }^{+23.1}$

u Events in Far Detector

"w/oscillation":
$\Delta \mathrm{m}^{2}{ }_{23}=2.4 \times 10^{-3} \mathrm{eV}^{2}$ $\sin ^{2} 2 \theta_{23}=1$

Fully-Contained	33	54.5	24.6	0.0094
Fiducial Volume, $\mathrm{E}_{\mathrm{Vis}}>30 \mathrm{MeV}$	23	36.8	16.7	0.0011
Single-ring μ-like $\mathrm{P}_{\mu}>200 \mathrm{MeV} / \mathrm{c}$	8	24.5 ± 3.9	7.1 ± 1.3	-
 derec $<10 \mathrm{GeV}$	8	22.8 ± 3.2	6.3 ± 1.0	-

data consistent with previously measured $\Delta \mathrm{m}^{2}{ }_{23}, \theta_{23}$

v_{e} Selection

	Data	MC Expectation		Acc. Bg $12 \mu s$ window
		no oscillation	w/oscillation	
Fully Contained	33	54.5	24.6	0.0094
Fiducial Volume, $\mathrm{E}_{\text {vis }}>30 \mathrm{MeV}$	23	36.8	16.7	0.0011
Single-ring e-like $\mathrm{E}_{\mathrm{e}}>100 \mathrm{MeV} / \mathrm{c}$	2	1.5 ± 0.7	1.3 ± 0.6	-

"w/oscillation": $\Delta \mathrm{m}^{2}{ }_{23}=2.4 \times 10^{-3} \mathrm{eV}^{2}$ $\sin ^{2} 2 \theta_{23}=1$ $\sin ^{2} 2 \theta_{13}=0.1$ $\delta \mathrm{cP}=0$

ν_{e} candidate event

Source	MC Expectation
Beam $v_{\mu}(\mathrm{CC}+\mathrm{NC})$	0.13
Beam $\bar{v}_{\mu}(\mathrm{CC}+\mathrm{NC})$	0.01
Beam $v_{e}(\mathrm{CC})$	0.16
Total background	0.30 ± 0.07 (syst.)
Total sig.+background	1.20 ± 0.23 (syst.)

1 event remains with expected background of 0.30 ± 0.07 events

Result

"Normal" Hierarchy

"Inverted" Hierarchy

Exclusion versus oscillation parameters ($\theta_{13}, \delta_{\mathrm{CP}}$, mass hierarchy)
For $\delta_{\mathrm{CP}}=0$

- Feldman Cousins method: $\sin ^{2} 2 \theta_{13}<0.50$ (normal) / 0.59 (inverted)
- 1-sided upper limit: $\sin ^{2} 2 \theta_{13}<0.44$ (normal) / 0.53 (inverted)

Current Status

Since November 2010

- Accumulated 1.45×10^{20} POT till March 2011
- ~4 times data presented here (3.23×1019 POT)
- analysis in progress

Looking Ahead:

Ultimate sensitivity: $\sin ^{2} 2 \theta_{13} \sim 0.006(\delta \mathrm{CP}=0)$ $\delta \sin ^{2} 2 \theta_{23} \sim 0.01$

Neutrino flux prediction

- improved $\pi^{ \pm}$measurements
- K production measurements
- full target measurement

Near Detector:

- ν_{e} and ν_{μ} spectrum measurement
- π^{0} production
- v interaction properties

Far Detector

- Improved selection and systematics

Conclusions

- T2K has produced its first neutrino oscillation results
- 3.23×10^{19} POT taken in first half of 2010
- $8 v_{\mu}$ CCQE candidates at far detector consistent with past v_{μ} disappearance experiments
- $1 v_{e}$ candidate with expected background of 0.30 ± 0.07
- 1.45×10^{20} POT taken before March earthquake
- expect θ_{13} sensitivity better than CHOOZ limit
- analysis underway
- Tsunami from March earthquake did not reach J-PARC
- all T2K collaborators safe
- recovery assessments continue
- We thank you for support and solidarity

