

T2K: First Results

H. A. Tanaka (IPP/UBC)

Fermilab Short Baseline Neutrino Workshop

Motivation

 θ_{13} :

- Last unmeasured parameter in neutrino mixing matrix (sin²2 θ_{13} <0.15)
- "Gate keeper" to CP violation in neutrino oscillations

Motivation

 θ_{13} :

- Last unmeasured parameter in neutrino mixing matrix (sin²2 θ_{13} <0.15)
- "Gate keeper" to CP violation in neutrino oscillations

Atmospheric oscillation parameters θ_{23} , Δm^2_{23}

- Maximal mixing ($\theta_{23} = 45^{\circ}$)? Precision measurement needed
- possible clues to illuminate structure of neutrino mixing matrix

Motivation

"Tokai-to-Kamioka":

- high sensitivity search for $v_{\mu} \rightarrow v_e$ appearance due to θ_{13}
- high precision measurement of v_{μ} disappearance due to θ_{23} , Δm^2_{23}

by sending high intensity ~600 MeV v_{μ} beam 295 km

- from Tokai (J-PARC)
- to Kamioka (Super Kamiokande detector)

~500 collaborators from 59 institutions 12 nations,

"Tokai-to-Kamioka":

- high sensitivity search for $v_{\mu} \rightarrow v_e$ appearance due to θ_{13}
- high precision measurement of v_{μ} disappearance due to θ_{23} , Δm^2_{23}

by sending high intensity E~600 MeV v_{μ} beam L=295 km

- from Tokai (J-PARC)
- to Kamioka (Super Kamiokande detector)

With known Δm^2 values, chosen L/E maximizes oscillation probabilities

 $\begin{array}{ll} P(\nu_{\mu} \rightarrow \nu_{e}) & \sim & \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \times \sin^{2} \Delta_{31} & \text{B. Kayser, NuSAG Mar 2006} \\ & + & \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \times \sin \Delta_{31} \sin \Delta_{21} \cos(\Delta_{32} \pm \delta) \\ & + & \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \cos^{2} \theta_{13} \times \sin^{2} \Delta_{21} & \Delta_{ij} = 1.27 \Delta m_{ij}^{2} (L/E) \end{array}$

$$P(\nu_{\mu} \not\rightarrow \nu_{\mu}) \sim \sin^2 2\theta_{23} \sin^2 \Delta_{23}$$

Neutrino beam produced by π^+ decays from 30 GeV protons from J-PARC Main Ring interacting on carbon target

Off-Axis Beam Concept

- Pions (and neutrinos) produced with wide energy spectrum
- Relativistic kinematics can be exploited to produce "narrow" band neutrino beam

 $p(30 \text{GeV}) + \text{C} \rightarrow \pi^+ + X$

- Tune angle to maximize flux at oscillation maximum
- Reduce high energy neutrinos

E_. (GeV)

Neutrino Interactions

$$\nu_{\ell} + n \to \ell^- + p \qquad \qquad \nu_{\ell} + p \to \nu_{\ell} + p + \pi^0$$

- At ~1 GeV, interactions dominated by "quasi-elastic"
 - CC allows flavor-tagging (v_e vs. v_{μ})
 - neutrino energy via lepton momentum
- Single pion production (CC and NC):
 - misidentification as CCQE results in incorrect neutrino energy
 - photons from $\pi^0 \rightarrow \gamma + \gamma$ may be misidentified as electrons

Neutrino flux

 v_e flux

Neutrino flux predicted by detailed MC simulation tuned with:

- Preliminary NA61 π^{\pm} production data
- Other external data for K, hadron interaction cross sections.
- Measurements from beam monitors, neutrino beam direction.

On-axis: (INGRID)

"GRID" of neutrino detectors:

- Fe/Scintillator trackers
- event rate allows ~daily monitor of profile
- Measure center of beam with profile of interaction rate module-to-module
- Beam axis within 1 mrad of nominal

Off-axis detectors

UA1 magnet 0.2 T

P0D

scintillator/(brass/Pb) tracker optimized for π^0 detection via photon shower identification

Tracker: 3 TPC/2 FGD

FGD=Fine Grained Detector (1 ton) scintillator tracker with ~1x1 cm² bars **TPC**: Precise kinematic reconstruction of ν_{μ} CC with 0.2 T magnetic field Particle ID for beam ν_{e} (~10³ rejection)

ECAL

Pb/scintillator tracking calorimeter for photon detection and $e/\mu/\pi$ identification of tracks

SMRD:

scintillator planes instrumenting magnet yoke for muon detection

Scintillation Detectors

Multi-pixel Photon Counter (MPPC)

- array of silicon photodiodes operated in in limited Geiger mode
- 1.3 x 1.3 mm² with 667 pixels

>50000 devices in first large scale use

MPPC coupled to fibers

Cross section of scintillator bar

TPCs

3 Large volume TPCs with MicroMegas amplification/readout

- Ionization measurement for >3 σ separation between e/ μ
- <10% momentum resolution at p=1 GeV/c</p>
- scale uncertainty < 2%

Completed Product:

Event:

POD

TPC1

TPC2

FGD1

High energy deep-inelastic scattering event with

muon from upstream interaction

TPC3

FGD2

DSECAL

Beam Delivery

O(10¹⁴)/pulse delivered in 6(8) bunches in 3.5(3.2) sec cycle. 145 kW operation achieved (goal 750 kW) 3.23x10¹⁹ POT from 2010 analyzed thus far

v_{μ} CC interactions

Near detector "normalization" measurement corrects predicted far detector event rates

Observed rate relative to expectation is

"inclusive" v_{μ} CC selection

- forward negative muon in TPC
- match to FGD to determine vertex
- veto on upstream TPC1

 $R = 1.061 \pm 0.027 (\text{stat})^{+0.044}_{-0.038} (\text{det. sys.}) \pm 0.039 (\text{phys. model})$

Cherenkov Radiation

- EM radiation by charged particles with $v > c_n$
- Detected by >10K photomultiplier tubes
 - sensitive to single photons (40% coverage)
 - O(ns) time resolution
- Particle can be identified by ring profile
 - "muon" vs. e/γ (EM shower)

Signal/Background

 $\nu_{\ell} + n \rightarrow \ell^- + p$ • CCQE appears as single μ or e ring

• E_v by energy/direction relative to beam.

 $u_{\ell} + (n/p) \rightarrow \nu_{\ell} + (n/p) + \pi^{0}$ • Rings from $\pi^{0} \rightarrow \gamma + \gamma$ rejected via 2-ring reconstruction and invariant mass cut

• π^+ rejected by decay electron requirements

Event Selection

v_e selection	v_{μ} selection					
Fully contained, vertex in fiducial volume						
Visible energy > 100 MeV	Visible energy > 30 MeV					
Number of Rings = 1						
Ring is e-like	Ring is μ-like					
No decay electrons	0 or 1 decay electrons					
$\gamma\gamma$ mass < 105 MeV/c ²	_					
E _ν <1250 MeV	_					
	μ momentum $> 200 \text{ MeV/c}$					

Far Detector Prediction:

Neutrino flux prediction

- external input (primary beam parameters, muon/neutrino profile, π/K measurements)
- MC accounts to simulate focussing, geometry.

Neutrino interaction model

 encapsulate accumulated knowledge of neutrino interactions data and modelling

Near Detector data:

Correct prediction based on observed rate

detector

beam simulation

neutrino event generator

Systematic Uncertainties

Error source	Signa	l (%)	Backgrour	nd (%)	 Far detector systematics determined from control sample 			
Normalization	1.	4	1.4					
Energy Scale	0.	3	0.5		(atmo	(atmospheric neutrinos, "hybrid		
Ring counting	3.	9	8.4		π^0 , etc	π^{0} , etc.)		
Muon PID	-	_			 Cross section uncertainties 		certainties	
Electron PID	3.	8	8.1		dominated by FSI and C0		Sl and CCOF	
π^0 mass cut	5.	1	8.7		mode	modelling		
Decay electron	0.	1	0.3		mode	Total backgro		
π^0 rejection	_		5.9					
Ear datastar							Systematics	
uncertainties		Erro	Error source		^G SK (%)	N _{ND} (%)	N _{BKG} SK/N _{ND} (%)	
		SK E	fficiency	±	±15.8	_	±15.8	
Cross		s Section ±		13.9	±8.4	±14.3		
Beam		n Flux	<u>±</u>	±18.1	±19.8	±8.9		
ND efficiency		fficiency	_		+5.6 -5.2	+5.6 -5.2		
	Overall Norm					±2.7		
Total		1	27.8	+22.2 -22.1	+23.9 -23.8			

μ Events in Far Detector

v_e Selection

		Data	MC Expe	Acc. Bg	
	Da		no oscillation	w/oscillation	12µs window
Fully Contained		33	54.5	24.6	0.0094
	Fiducial Volume, E _{vis} > 30MeV	23	36.8	16.7	0.0011
	Single-ring e-like E _e >100MeV/c	2	1.5±0.7	1.3±0.6	_

"w/oscillation": $\Delta m^2{}_{23} = 2.4 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{23} = 1$ $\sin^2 2\theta_{13} = 0.1$ $\delta_{CP} = 0$

v_e candidate event

1 event remains with expected background of 0.30±0.07 events

Exclusion versus oscillation parameters (θ_{13} , δ_{CP} , mass hierarchy) For $\delta_{CP} = 0$

- Feldman Cousins method: $sin^2 2\theta_{13} < 0.50$ (normal) / 0.59 (inverted)
- 1-sided upper limit: $sin^2 2\theta_{13} < 0.44$ (normal) / 0.53 (inverted)

Current Status

Since November 2010

- Accumulated 1.45x10²⁰ POT till March 2011
- ~4 times data presented here (3.23x10¹⁹ POT)
- analysis in progress

Looking Ahead:

Ultimate sensitivity: $sin^22\theta_{13} \sim 0.006 \ (\delta_{CP} = 0)$ $\delta sin^22\theta_{23} \sim 0.01$

Neutrino flux prediction

- improved π^{\pm} measurements
- K production measurements
- full target measurement

Near Detector:

- v_e and v_μ spectrum measurement
- π^0 production
- v interaction properties

Far Detector

Improved selection and systematics

Conclusions

- T2K has produced its first neutrino oscillation results
 - 3.23 x 10¹⁹ POT taken in first half of 2010
 - 8 v_μ CCQE candidates at far detector consistent with past v_μ disappearance experiments
 - 1 v_e candidate with expected background of 0.30±0.07
- 1.45x10²⁰ POT taken before March earthquake
 - expect θ_{13} sensitivity better than CHOOZ limit
 - analysis underway
- Tsunami from March earthquake did not reach J-PARC
 - all T2K collaborators safe
 - recovery assessments continue
 - We thank you for support and solidarity