Reactor Neutrino Oscillation Experiments: Status and Prospects

Karsten M. Heeger

University of Wisconsin

?

Neutrino Physics at Reactors

Next - Discovery and precision measurement of θ_{13}

 $\begin{array}{l} \textbf{2008} \text{ - Precision measurement of} \\ \Delta m_{12}{}^2 \text{ . Evidence for oscillation} \\ \textbf{2003} \text{ - First observation of reactor} \\ \text{ antineutrino disappearance} \end{array}$

1995 - Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

Discovery of the Neutrino

1956 - "Observation of the Free Antineutrino" by Reines and Cowan

Discovery of the Neutrino

1956 - "Observation of the Free Antineutrino" by Reines and Cowan

raiotori i loogoi, oriit. or theoorion

Antineutrino Detection

inverse beta decay $\overline{v}_e + p \rightarrow e^+ + n$

coincidence signature

prompt e⁺ and delayed neutron capture

 $E\overline{v}_{e} \cong E_{e^{+}} + E_{n}^{\prime} + (M_{n}-M_{p}) + m_{e^{+}}^{\prime}$

including E from e⁺ annihilation, $E_{prompt}=E_{\overline{v}}$ - 0.8 MeV

Reactor Antineutrinos

Reactor Antineutrinos

only ~ 1.5 v_e /fission are detected

cross-section accurate to +/-0.2%

FNAL, May 12, 2011

Measurement of Reactor Spectra

Goesgen Experiment (1980's)

comparison of predicted spectra to observations

two curves are from fits to data and from predictions based on Schreckenbach et al.

3 baselines with one detector

flux and energy spectrum agree to $\sim 1-2\%$

reactors are "calibrated" source of $\overline{v_e}$'s

Measurement of Reactor Spectra

Goesgen Experiment (1980's)

comparison of predicted spectra to observations

two curves are from fits to data and from predictions based on Schreckenbach et al.

3 baselines with one detector

flux and energy spectrum agree to $\sim 1-2\%$

reactors are "calibrated" source of $\overline{v_e}$'s

→ but reactor anomaly...

are reactor flux predictions uncertain to 3%?

Reactor and Accelerator Experiments

- appearance experiment $v_{\mu} \rightarrow v_{e}$
- measurement of $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ yields θ_{13}, δ_{CP}
- baseline O(100 -1000 km), matter effects present

Method 2: Reactor Neutrino Oscillation Experiment

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- disappearance experiment $\overline{\nu_e} \rightarrow \overline{\nu_e}$
- look for rate deviations from 1/r² and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects

Oscillation Experiments with Reactors

experiments look for non-1/r² behavior of antineutrino interaction rate

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

for 3 active neutrinos, can study oscillation with two different oscillation length scales: Δm^{2}_{12} , Δm^{2}_{13}

What about reactor <u>appearance</u> experiments?

Mean antineutrino energy is 3.6 MeV.

Only disappearance experiments are possible.

Oscillation Searches with Reactor Antineutrinos

Measuring Reactor Antineutrinos with KamLAND

55 reactors

 $^{235}U:^{238}U:^{239}Pu:^{241}Pu = 0.570:$ 0.078: 0.0295: 0.057 reactor \overline{v} flux at KamLAND

~ 6 x 10⁶/cm²/sec

 $\overline{\nu}_{e} + p \rightarrow e^{+} + n$ through inverse β -decay $E_{\overline{\nu}_{e}} \simeq E_{p} + \overline{E}_{n} + 0.8 \,\text{MeV},$

FNAL, May 12, 2011

KamLAND 2003: First Direct Evidence for Reactor \overline{v}_{e} Disappearance

Prompt event energy spectrum for $\overline{v}_{\rm e}$

number of events

expected:	2179 ± 89 (syst)
observed:	1609
bkgd:	276 ± 23.5

significance of disappearance (with 2.6 MeV threshold): 8.5σ no-osc χ^2 /ndf=63.9/17

significance of distortion: > 5σ best-fit χ^2 /ndf=21/16 (18% C.L.)

	Detector-related (%)		Reactor-related (%)	
Δm_{21}^2	Energy scale	1.9	$\overline{\nu}_e$ -spectra [7]	0.6
Event rate	Fiducial volume	1.8	$\overline{\nu}_e$ -spectra	2.4
	Energy threshold	1.5	Reactor power	2.1
	Efficiency	0.6	Fuel composition	1.0
	Cross section	0.2	Long-lived nuclei	0.3

8.5σ

0.6

2.4

2.1

1.0

0.3

Prompt event energy spectrum for v_e

reactor flux and fiducial volume important for precision reactor experiments

KamLAND 2008: Precision Measurement of Oscillation

reduced systematics in target protons by calibrating fiducial volume

Karsten Heeger, Univ. of Wisconsin

FNAL, May 12, 2011

Neutrino Oscillation

Mixing Angles & Mass Splittings

Tell me O13 / in 14 May 2003

「教えてください、 0₁₃を!」 シェルドン・リー・グラショウ 2003年5月14日 グラショウ氏は物理学特別講演のため夫人と共に来位。古本高志東北大学総長と会見後、 ニュートリノ科学研究センターを訪問され、ニュートリノ研究の新たな成果を祈念して記された。

14 May 2003 S. Glashow

Precision Measurement of θ_{13} with Reactor Antineutrinos

Search for θ_{13} in new oscillation experiment with <u>multiple detectors</u>

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

Karsten Heeger, Univ. of Wisconsin

FNAL, May 12, 2011

Concept of Reactor θ_{13} Experiments

Measure ratio of interaction rates in multiple detectors

far

Concept of Reactor θ_{13} Experiments

Measure ratio of interaction rates in multiple detectors

Measured Ratio of Rates

Measure ratio of interaction rates in multiple detectors

Measure ratio of interaction rates in multiple detectors

Measure ratio of interaction rates in multiple detectors

Measure ratio of interaction rates in multiple detectors

cancel reactor systematics, no fiducial volume cuts

Reactor θ_{13} Experiment at Krasnoyarsk, Russia

Original Idea: First proposed at Neutrino2000

World of Reactor θ₁₃ Neutrino Experiments

Daya Bay, Double Chooz, and Reno - international collaborations - under construction/taking data

JBLE

Reactor Experiment for Neutrino Oscillations at YoungGwang in Korea

Karsten Heeger, Univ. of Wisconsin

FNAL, May 12, 2011

antineutrino detectors

multiple detectors per site cross-check efficiency

Experiment	Thermal Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)	Start Date Near/Far	Sensitivity @2.5x10 ⁻³ eV ² 90% CL, 3 years
Double- CHOOZ (France)	8.6	410/1050	115/300	8.8/8.8	2012/2011	0.03
RENO (So. Korea)	17.3	290/1380	120/450	20/20	2011/2011	0.02
Daya Bay (China)	17.4	363(481) / 1985(1613)	260/910	40(×2) / 80	2011/2012	0.008

Antineutrino Detection

Signal and Event Rates

Daya Bay near site	840
Ling Ao near site	760
Far site	90

events/day per 20 ton module

0.3 b

$$49,000 \text{ b} \rightarrow + \text{Gd} \rightarrow \text{Gd}^* \rightarrow \text{Gd} + \gamma$$
's (8 MeV) (delayed)

Prompt Energy Signal

 $\overline{\nu}$ + $\mathbf{D} \rightarrow \mathbf{e}^+ + \mathbf{n}$

Delayed Energy Signal

Detector-Related Uncertainties

		Absolute measureme	Rela nt mea	tive suremen	t
Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	<0.01	<0.01	<0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

Ref: Daya Bay TDR

O(0.2-0.3%) precision for relative measurement between detectors at near and far sites

Measuring θ_{13} : A Possible Scenario

What about sterile neutrinos?

θ₁₃ Experiments and Light Sterile Neutrinos (0.01-0.1 eV²)

 θ_{14} -driven oscillations affect far and near detector data differently

 θ_{14} -driven effects impact ones ability to measure sin²2 θ_{13} , shape analysis can disentangle θ_{13} from θ_{14} -driven effects.

roles of near and far detectors may be reversed compared to those associated to studying θ_{13} effects

de Gouvea and Wytock arXive:0809.5076

What about sterile neutrinos?

θ_{13} Experiments and Light Sterile Neutrinos (0.01-0.1 eV²)

Karsten Heeger, Univ. of Wisconsin

arXive:0809.5076

What about sterile neutrinos?

θ₁₃ Experiments and 3+2 Sterile Neutrinos (~1 eV²)

oscillations driven by the extra sterile neutrinos would produce a constant suppression at both the near and far detectors

data from near and far detectors can be used to probe θ_{13} and θ_{14} -driven effects

Bandyopadhyaya and Choubey arXive:0707.2481v1

Karsten Heeger, Univ. of Wisconsin

Daya Bay Far Hall

reactor \overline{v}_e from 1.8km distance

~90 events/ day/detector

a multi-detector experiment with baseline O(10m) in experimental hall

Littlejohn, KMH -

Daya Bay Far Hall

reactor \overline{v}_e from 1.8km distance

~90 events/ day/detector

a multi-detector experiment with baseline O(10m) in experimental hall

Look for very short-baseline variations on top of the reactor \overline{v}_e background

- → sterile oscillations?
- → Pontecorvo v $\rightarrow \overline{v}$ oscillations?
- → flavor change from magnetic moment scattering?

Karsten Heeger, Univ. of Wisconsin

Littlejohn, KMH -

spent nuclear fuel?

1111

Daya Bay Far Hall

reactor \overline{v}_e from 1.8km distance

~90 events/ day/detector

Littlejohn, KMH -

Daya Bay Far Hall

reactor \overline{v}_e from 1.8km distance

Pdis

~90 events/ day/detector

Summary and Conclusions

• Atmospheric, solar and reactor experiments were **key to the discovery of neutrino mass and oscillation** in the past decade (1998 -).

• Upcoming reactor experiments will measure θ_{13} . Key to model building. Measurement of $\sin^2 2\theta_{13} > 0.01$ is key to planning leptonic CPV searches in long-baseline v oscillation experiments.

• Future intermediate/long-baseline reactor antineutrino experiments may be used for a precision measurement of θ_{12} (using baseline from $\Delta m^2_{12=} \Delta m^2_{sol}$).

• Determination of mass hierarchy with kt-size detectors is being explored.

• New experiments with multiple detectors at distances of 5-15m may offer opportunities for very short baseline oscillation searches with appropriate $\overline{\nu}_e$ source

Karsten Heeger, Univ. of Wisconsin