The Reactor Antineutrino Anomaly and its Implications

G. Mention (CEA-Saclay, Irfu SPP)

 $\overline{\Delta}$

G. Mention, Short Baseline Neutrino Workshop 2011, Fermilab

NEW REACTOR ANTINEUTRINO SPECTRA

T.A. Mueller, D. Lhuiller*, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, F. Yermia.

CEA / Irfu & IN2P3 / Subatech

arXiv:1101.2663 [hep-ex] , accepted in PRC
 * corresponding author

• Electron antineutrinos emitted through decays of Fission Products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu $\overset{A}{Z}X \longrightarrow \overset{A}{Z+1}Y + e^{-} + \bar{\nu}_{e}$

Each fission product may have many decay modes or branches

The guts of $S_k(E)$

- A single beta decay branch: ${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + e^{-} + \bar{\nu}_{e}$
 - depends on: nucleus (Z), branching ratio (BR), end point (Q), spin-parity
 - Energy conservation: $E_e + E_v = Q_e$
- Anti-v spectra are computed from electron spectra by "inverting" each branch separately
- Cannot go from e⁻ to v from a global e⁻ spectrum, need each individual branch from each contributing nucleus

Complementary approaches to compute the v flux

G. Mention, Short Baseline Neutrino Workshop 2011, Fermilab 7

Unique reference to be met by any other measurement or calculation

œ

- Accurate measurements @ ILL in Grenoble (1980-89):
 - High resolution magn. spectrometer
 - Intense and pure thermal n spectrum from the core (not suitable for ²³⁸U which needs fast n)
 - → Measure total e⁻ spectrum from decays of fission product.

$$\sum_{A,Z} \left\{ {}^{A}_{Z} X \longrightarrow {}^{A}_{Z+1} Y + e^{-} + \bar{\nu}_{e} \right\}$$

 Calibration through extensive use of reference internal conversion electron lines → Normalization syst. @ 1.8%

The New Mixed Conversion Approach

- 1. SAME ILL e⁻ data Anchorage
 - 2. Ab-Initio: "true" distribution of β -branches reproduces >90% of ILL e⁻ data.
 - 3. Old-procedure: reduce use of effective anchorage-branches to the remaining 10%.

- About +3% normalization shift with respect to old v spectrum
- Similar result for all isotopes (²³⁵U, ²³⁹Pu, ²⁴¹Pu)
- Stringent Test Performed Origin of the bias identified

œ

MURE evolution code: core composition and off equilibrium effects

(Subatech Nantes)

$$S_k(E) = \sum_{fp=1}^{N_{fp}} \mathcal{A}_{fp}(T) \times S_{fp}(E)$$

Full simulation of reactor core
 → absolute prediction of isotopes inventory.

• Relative off-equilibrium effect: close to beta-inverse threshold, a significant fraction of the v spectrum takes weeks to reach equilibrium

 \rightarrow Sizeable correction in the v oscillation range that depends on the exact chronology of ILL data taking.

Relative change of v spectrum w.r.t. infinite irradiation time

THE REACTOR ANTINEUTRINO ANOMALY

G. Mention, M. Fechner, T. Lasserre, M. Cribier, Th. Mueller D. Lhuillier, A. Letourneau,*

CEA / Irfu

arXiv:1101.2755 [hep-ex], PRD83, 073006 (2011) * corresponding author

V-A Cross Section

• Inverse Beta Decay:
$$\bar{\nu}_e + p \rightarrow e^+ + n$$

• Theoretical predictions: our results agree with
• Vogel 1984 (Phys Rev D29 p1918)
• Fayans 1985 (Sov J Nucl Phys 42)
• Vogel-Beacom 1999: "supersedes" Vogel 84 (Phys Prev D60 053003)
 $\sigma_{V-A}(E_e) = \kappa p_e E_e (1 + \delta_{rec} + \delta_{wm} + \delta_{rad})$
• The pre-factor κ (two pseudo-independent approaches)
 $\kappa = \frac{G_F^2 cos^2(\theta_C)}{\pi} (1 + \Delta_{inner}^R)(1 + 3\lambda^2) = \frac{2\pi^2}{m_e^5 f^R \tau_n}$

- κ 's value raised over the history, from 0.914 10⁻⁴² cm² in 1981
 - Vogel/Beacom 1999 : $\kappa = 0.952 \ 10^{-42} \ cm^2$
 - Our work is based on 2010 PDG τ_n : κ = 0.956 10⁻⁴² cm²
 - But we anticipate 2011 κ = 0.961 10⁻⁴² cm² (< τ_n > revision)

Reactor electron anti-neutrino detection

• Inverse Beta Decay: $\bar{\nu}_e + p \rightarrow e^+ + n$ Threshold: 1.806 MeV Thermal power Target free protons • Anti-v_e interaction rate $n_{\nu} = \frac{1}{4\pi R^2} \frac{P_{\rm th}}{\langle E_f \rangle} N_p \varepsilon \sigma_f$ E released / fission Experimental cross section per fission: σ_f Emitted spectrum $\sigma_f^{\text{meas.}} = \frac{4\pi R^2 n_{\nu}^{\text{meas.}}}{N_n \varepsilon} \frac{\langle E_f \rangle}{P_{\text{th}}}$ Cross-section Detected spectrum Arbitrary Units - Predicted cross section per fission: σ_{pred} $\sigma_f^{\text{pred.}} = \int_0^\infty \phi_f^{\text{pred.}}(E_\nu) \sigma_{\text{V-A}}(E_\nu) \mathrm{d}E_\nu$ 3 5 8 6 7 9 E, (MeV)

- Final agreement to better than 0.1% on best known ²³⁵U w.r.t. their computations
- This validates our calculation code.

14

The New Cross Section Per Fission

• v-flux: 235 U : +2.5%, 239 Pu +3.1%, 241 Pu +3.7%, 238 U +9.8% (σ_{f}^{pred} 7)

• Off-equilibrium corrections now included $(\sigma_{f}^{\text{pred}} \nearrow)$

- Neutron lifetime decrease by a few % ($\sigma_{\rm f}^{\rm pred}$ **7**) ($\sigma_{\rm V-A}(E_{\nu}) \propto 1/\tau_n$)
- Slight evolution of the phase space factor ($\sigma_{f}^{pred} \rightarrow$)
- Slight evolution of the energy per fission per isotope ($\sigma_{f}^{pred} \rightarrow$)

• Burnup dependence:
$$\sigma_f^{pred} = \sum_k f_k \sigma_{f,k}^{pred}$$
 ($\sigma_f^{pred} \rightarrow$) relative effect

10 ⁻⁴³ cm ² /fission	old [3]	new	- ↓
$\sigma^{pred}_{f,^{235}U}$	$6.39{\pm}1.9\%$	$6.61{\pm}2.11\%$	+3.4%
$\sigma^{pred}_{f,239Pu}$	$4.19{\pm}2.4\%$	$4.34{\pm}2.45\%$	+3.6%
$\sigma^{pred}_{f,238}{}_{U}$	$9.21{\pm}10\%$	$10.10{\pm}8.15\%$	+9.6%
$\sigma_{f,^{241}Pu}^{pred}$	$5.73{\pm}2.1\%$	$5.97{\pm}2.15\%$	+4.2%

19 Experimental results at distances below 100 m

Measured neutrino rates and cross sections per fission σ_{f}

Technology							Baseline						
		K											
#	result	techno	$ au_n$ (s)	^{235}U	²³⁹ Pu	^{238}U	²⁴¹ Pu	old	new	err(%)	$\operatorname{corr}(\%)$	L(m)	
1	Bugey-4	3 He $+H_{2}$ O	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15	
2	ROVNO91	3 He $+$ H $_{2}$ O	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18	
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15	
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40	
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95	
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38	
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45	
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65	
9	\mathbf{ILL}	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9	
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33	
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92	
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57	
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18	
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24	
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18	
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18	
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18	
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25	
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18	

#	result	techno	τ_n (s)	^{235}U	²³⁹ Pu	^{238}U	²⁴¹ Pu	old	new	err(%)	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	3 He $+H_{2}$ O	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	$^{3}\mathrm{He+H_{2}0}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	3 He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	3 He $+$ PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Neutron lifetime

Averaged Fuel Composition

#	result	techno	τ_n (s)	⁹⁶⁵ U	²³⁹ Pu	²³⁸ U	241 Pt	old	new	err(%)	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	$^{3}\text{He}+\text{H}_{2}0$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

cord

OBSERVED/PREDICTED ratios: OLD & NEW (this work)

								7	7			
#	result	techno	τ_n (s)	^{235}U	²³⁹ Pu	^{238}U	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	$^{3}\mathrm{He}\mathrm{+H_{2}0}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Total Errors Exp.+v-Spectra (%) & Correlated errors (%)

											7	
#	result	techno	τ_n (s)	^{235}U	²³⁹ Pu	^{238}U	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	$^{3}\mathrm{He}\mathrm{+H_{2}0}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

- Our guiding principles: Be conservative & stable numerically
- We correlated experiments in the following way:
 - 2% systematic on flux fully correlated over all measurements of β-spectra of ILL
- Non-flux systematic error correlations across measurements:
 - Same experiment with same technology: 100% correlated
 - ILL shares 6% correlated error with Gösgen although detector slightly different. Rest of ILL error is uncorrelated.
 - Rovno 88 integral measurements 100% corr. with Rovno 91 despite detector upgrade, but not with Rovno 88 LS data
 - Rovno 88 integral meas. 50% correlated with Bugey-4

Experiments correlation matrix on ratios = meas./pred.

• Main pink color comes from the 2% systematic on ILL β-spectra normalization uncertainty

The experiment block correlations come from identical detector, technology or neutrino source

The reactor anti-neutrino anomaly

$$\chi^{2} = \left(r - \overrightarrow{R}\right)^{T} W^{-1} \left(r - \overrightarrow{R}\right)$$

Weights: $W = \Sigma_{unc.}^{2} + \Sigma_{cor.} C \Sigma_{cor.}$
with $\Sigma_{unc.}^{2} = \Sigma_{tot.}^{2} - \Sigma_{cor.}^{2}$

The synthesis of published experiments at reactor-detector distances ≤ 100 m leads to a ratio R of observed event rate to predicted rate of

 μ = 0.976 ± 0.024 (**OLD flux**)

With our **NEW flux** evaluation, this ratio shifts to

 μ = 0.943 ± 0.023,

leading to a deviation from unity at 98.6% C.L.

 $\chi^2_{\rm min}$ = 19.6/18

G. Mention, Short Baseline Neutrino Workshop 2011, Fermilab 24

The reactor rate anomaly

18/19 short baseline experiments <100m from a reactor observed a deficit of anti-v_e compared to the new prediction

- The effect is statistically significant at more 98.6%
- Effect partly due to re-evaluation of cross-section parameters, especially updated neutron lifetime, accounting for off equ. effect
- At least three alternatives:
 - Our conversion calculations are wrong. Anchorage at the ILL electron data is unchanged w.r.t. old prediction
 - Bias in all short-baseline experiments near reactors : unlikely...
 - New physics at short baselines, explaining a deficit of anti- v_e :
 - Oscillation towards a 4th, sterile v ?
 - a 4th oscillation mode with θ_{new} and Δm^2_{new}

The 4th neutrino hypothesis

Absence of oscillations disfavored at 98.6% C.L.

œ

- Reactor at ILL with almost pure ²³⁵U, with small core
- Detector 8 m from core
- Reanalysis in 1995 by part of the collaboration to account for overestimation of flux at ILL reactor

Affects the rate but not the shape analysis

Large errors, but looks like an oscillation pattern by eye ?

1981: Try to reproduce published contour

- How? Add uncorrelated systematic in each bin until it's large enough
- Quick simulation: Required error = 11%, uncorrelated, in each bin (mostly equivalent to the finite size of the reactor core in full simulation).
- We can reproduce the results quite well

Combined Reactor Rate+Shape contours

THE GALLIUM ANOMALY BASED ON GIUNTI & LAVEDER, PRD82 053005 (2010)

Radiochemical experiments Gallex(left) & Sage (right)

GALLEX (GaCl₃) and SAGE (liquid Ga) were radiochemical experiments, counting the conversion rate of ⁷¹Ga to ⁷¹Ge by (solar) neutrino capture [cannot detect anti- v_e]

$$^{71}\mathrm{Ga} + \nu_\mathrm{e} \rightarrow ~^{71}\mathrm{Ge} + \mathrm{e^{-1}}$$

G. Mention, Short Baseline Neutrino Workshop 2011, Fermilab 32

• 4 calibration runs with intense (~ MCi) v_e (not anti- v_e !) sources.

- Neutrinos detected through radiochemical counting of Ge nuclei: $^{71}Ga + \nu_e \rightarrow ^{71}Ge + e^-$
 - 2 runs at GALLEX with a ⁵¹Cr source (720 keV v_e emitter)
 - 1 run at SAGE with a ⁵¹Cr source
 - 1 run at SAGE with a 37 Ar source (810 keV v_e emitter)
 - All observed a deficit of neutrino interactions compared to the expected activity.
 - Our analysis:
 - Monte-Carlo simulation of GALLEX and SA + correlated the 2 GALLEX runs together and the 2 SAGE runs together (a bit more conservative than Giunti & Laveder PRD82 053005, 2010 to combine GALLEX & SAGE)

The Gallium anomaly

- Effect reported in C. Giunti & M. Laveder in PRD82 053005 (2010)
- Significance reduced by additional correlations in our analysis
- No-oscillation hypothesis disfavored at 97.7% C.L.

Putting it all together: reactor rates + shape + Gallium

The no-oscillation hypothesis is disfavored at 99.8% CL

IMPLICATIONS FOR \Theta_{13}

G. Mention, Short Baseline Neutrino Workshop 2011, Fermilab

- The choice of normalization is crucial for reactor experiments looking for $\theta_{\rm 13}$ without near detector

$\sigma_{f}^{pred,new}$: new prediction of the antineutrino fluxes

 σ_{f}^{ano} : experimental cross section (best fitted mean averaged)

 A deficit observed at 1-2 km can either be caused by θ₁₃ or by other explanations (experimental, new physics?)

How do you normalize the expected flux, knowing the fuel composition?

in this slide assume Bugey-4 fuel comp. If near + far detector, not an issue anymore

Reanalysis of KamLAND's 2010 results

arXiv:1009.4771v2 [hep-ex]

Systematics

(A)

eneraie atomique · eneraies alternative

	Detector-related	(%)	Reactor-related (%)				
$\overline{\Delta m^2_{21}}$	Energy scale	1.8 / 1.8	$\overline{\nu}_e$ -spectra [31]	0.6 / 0.6			
Rate	Fiducial volume	1.8/2.5	$\overline{\nu}_e$ -spectra	2.4 / 2.4			
	Energy scale	1.1 / 1.3	Reactor power	2.1 / 2.1			
	$L_{cut}(E_{\rm p})$ eff.	0.7 / 0.8	Fuel composition	1.0 / 1.0			
	Cross section	0.2/0.2	Long-lived nuclei	0.3 / 0.4			
	Total	2.3/3.0	Total	3.3/3.4			

Reproduced KamLAND spectra within 1% in [1-6] MeV range

- Our interpretation (different from Arxiv:1103:0734 by Schwetz et al. for KamLAND)
 - No hint on θ_{13} >0 from reactor experiments: sin²(2 θ)<0.10 (90%C.L., 1dof)
 - Global 90 % CL limit stays identical to published values
 - Multi-detector experiments are not affected

Outlook

New Reactor Antineutrino Anomaly Discovered

- New physics hypothesis tested: 4th neutrino
 - no-oscillation hypothesis disfavored at 99.8%

Clear experimental confirmation / infirmation is needed:

• L/E≈ few m/MeV or km/GeV

New Experiment at Reactor

Short Baseline – Shape + Rate Analysis: SCRAAM, Nucifer,...

Mci neutrino generator in/close to a large liquid scintillator Like SNO+, Borexino, KamLAND

New neutrino beam experiment probing for electron GeV neutrino disappearance at 100 m & 1 km C. Rubbia's proposal at CERN-PS

(A)

Nucifer

CEA/Irfu

G. Mention, Short Baseline Neutrino Workshop 2011, Fermilab 44

Nucifer attempt testing the anomaly

2

3

0.8

Reconstructed charge (pe's)

4

5

Visible Energy [MeV]

6

7

8

MCi ⁵¹Cr/³⁷Ar Experiment Concept

- A strong 1 MCi ν_e source in the middle of a large LS detector
- Elastic scattering on e⁻ (few 1,000 evts, 150 days, >250 keV)
- A good resolution in position (20 cm)

Promising experimental prospect testing the RAA!

BACKUP SLIDES

G. Mention, Short Baseline Neutrino Workshop 2011, Fermilab

Stringent test

- Define "true" e⁻ and v spectra from reduced set of wellknown branches from ENSDF nuclei data base.
- Apply exact same OLD conversion procedure to true e⁻ spectrum.
- 3. Compare the converted v spectrum to the true one.
- 4. This technique gives a 3% bias compared to the true v spectrum

=> The **OLD** effective conversion method biases the predicted v spectrum at the level of -3% in normalization.

