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The Reactor Antineutrino Anomaly 
  Mention, et al, re-analyzed many previous short baseline reactor 

experiments, in light of their new antineutrino flux prediction 
  The result: new global “Reactor Antineutrino Anomaly” at 2 sigma 

significance: 

Nobs/Npred = 0.979 +/- 0.029 => 0.943 +/- 0.023 
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SCRAAM Proposal 

  To test the anomaly, perform: 

•  An independent re-evaluation of the antineutrino flux 
prediction 
- Highly desirable to bolster confidence in the result and examine 

systematics related to the procedure 

•  A relatively rapid and inexpensive experimental 
measurement  
-  requires a location with a high antineutrino flux and appropriate 

core-detector geometry  
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Independent Antineutrino Flux Prediction 

PHYSICAL REVIEW C 81, 025807 (2010) 

G. Keefer, PhD Thesis, University of Alabama, 2009 

  Exercise the same methodology as Mueller, 
et al, but in addition: 
•  Incorporate a more precise treatment for 

generation of fission product beta spectra 
-  Code base rigorously tested in KamLAND 

•  Examine, via benchmarked reactor 
simulations, potential systematic related to 
use of ILL integral electron measurement 
-  ILL Research reactor neutron flux differs from 

that in a PWR 

•  Seek to benchmark the fission beta electron 
spectrum fitting procedure against a non-
reactor fissile isotope 
-  252Cf is obvious candidate; would require 

measurement of 252Cf beta spectrum 
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The San Onofre Nuclear Generating Station:  
Our (nonproliferation) laboratory for over a decade 

  We have cultivated an exceptionally strong and trusting relationship with SONGS:  
•  A multitude of access requests have been readily granted since 1999 
•  Provide unescorted reactor access, deployment assistance, commercially 

sensitive fueling data, introductions to other operators, ….. 
  We possess unparalleled operational experience in this industrial environment: 

•  Five detector deployments since 2003 

Direct Observation of reactor fuel 
burnup via antineutrino counting
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Tendon Galleries are Ideal Deployment Locations 

24m 30mwe 
  High Flux: ~1017 ν/m2/s 
  130-180m to other reactor 
  Gallery is annular – unfortunately no 

possibility to vary baseline 
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Tendon Gallery Access 



8 
Lawrence Livermore National Laboratory 

LLNL-PRES-483483 

Reactor Comparison 

Reactor Baseline Core  Detector  ΔL/L 
(FWHM) 

Power Flux  
ν/m2/s 

ILL 10m Ø0.4m x 
0.2m (?) 

Ø1mx1m ~8% 58 MWth ~1x1016 

Bugey 15m Ø2.5 x 2.5m 1mx1m ~30% 2800 MWth ~2x1017 

SONGS 24m Ø3m x 2m Ø1mx2m ~10% 3400 MWth ~1x1017 
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Effect of Baseline, Baseline Distribution 
   (sin2(2θ) =0.165,Δm2 =2.4 eV2)   

SONGS 

Bugey 

ILL 
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The SCRAAM Detector Concept 
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Detection Rate, Detector Systematics 

  Assuming 40% efficiency, expect detection rate of 
about 4000 ν/day 

  Precision on absolute efficiency of ~ 4% would require 
considerable effort, but appears feasible 

  Extensive source calibrations would be required 
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We have completed considerable R&D 
on detectors of this scale 

  Most recent: 3.6 ton liquid scintillator detector (BC-525, 0.1% Gd) 
  For deployment at a CANDU6 reactor in 2012 
  Understand safety and regulatory requirements for reactor site 
  Successful commissioning run just completed 
  Validated mechanical design for double ended PMT readout 
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Example Oscillation Patterns  
   150 days, sin2(2θ) =0.165, Δm2 =0.15 eV2   
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Example Oscillation Patterns  
   150 days, sin2(2θ) =0.165, Δm2 =0.6 eV2   
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Example Oscillation Patterns  
   150 days, sin2(2θ) =0.165, Δm2 =1.2eV2   
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Example Oscillation Patterns  
   150 days, sin2(2θ) =0.165, Δm2 =2.4 eV2   
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Example Oscillation Patterns  
   150 days, sin2(2θ) =0.165, Δm2 =4.8eV2   
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  150 days, 3.6% systematic (uncorrelated), 99% C.L. 
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Exclusion: Rate + Shape 
  150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L. 
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Sensitivity to oscillation parameter values 
  150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L. 
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Sensitivity to oscillation parameter values 
  150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L. 
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Sensitivity to oscillation parameter values 
  150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L. 

Plot Credit: G. Mention 

  Provides a strong 
test of the low Δm2 
region excluded by 
Bugey3 shape 
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Schedule 
  Reactor refueling outages are key – background measurement: 

  Unit 3 in Oct. 2012 
  Unit 2 in Sept. 2013 

  Given our recent 
experience, 15-18 
months from design to 
deployment seems 
feasible 

  Could have first results 
within ~9 months of 
data taking 
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Conclusion 
  The “RAA” must be investigated. We propose to so so by: 

•  An independent reactor antineutrino flux prediction 
•  A relatively rapid and inexpensive experimental measurement 

  Our group has considerable relevant expertise: 
•  Reactor simulations 
•  Precision beta spectrum generator code 
•  Compact antineutrino detector design 
•  Access to a favourable reactor deployment site  

  The SONGS site is optimal for a power reactor deployment 
•  High flux, good overburden, and narrow ΔL/L 

  SCRAAM would rapidly exclude a large fraction of the “RAA” allowed 
phase space, and have discovery potential in the “best-fit” region 


