Adding Hydrogen/Deuterium Target to MINERvA Experiment?

Lingyan Zhu

for

MINERvA Collaboration

at

Short Baseline Neutrino Workshop

A continuation of Bari Osmanov's talk on MINERvA present and future. A LOI on deuterium was just submitted.

Nuclear Effects in A/D ratios

The structure functions of a nucleon within a nucleus are different from the structure functions of a free nucleon.

Fe/D cross sections show 13% nuclear effect. Precision neutrino data requires better understandings of nuclear effects.

Helium is Like Carbon

Jefferson Lab E03-013 data [Ref: J. Arrington, nucl-ex/0701017]

⁴He show similar nuclear EMC effect as ¹²C

5/14/2011

SBNW11 at Fermilab by L. Zhu

Using Neutrino Data for PDFs

At large x, the neutrino data from NuTeV experiment seem to pull the PDF fits in a different way from the Drell-Yan data. Reducing the nuclear corrections for NuTeV can reduce the tension. [J. F. Owens *et al.*, Phys.Rev.D75(2007)054030]

5/14/2011

Nuclear Effects for Neutrino Data

The Fe/D ratios extracted from NuTeV data and the free-nucleon PDFs differ in both shape and magnitude from those by using the models and charged lepton DIS data.

Ingo Schienbein et al., Phys.Rev.D80(2009)094004;PRD77(2008)054013

5/14/2011

SBNW11 at Fermilab by L. Zhu

MINERvA Experiment

6

Fine-grained MINERvA Detector (127 strips per plane)

MINERvA was designed to measure high precision cross section ratios.

5/14/2011

MINERvA Cryogenic Target

The CC Events from Deuterium Target

Let's fill the cryogenic target with deuterium in simulation

Software: MINERvA simulation (GENIE+GEANT4) Flux: NOvA neutrino and anti-neutrino ME beam

The CC-DIS Events from Deuterium Target

Each scaled to 18*10²⁰ POT, about 3-years running after NOvA beamline upgrade.

Accepted by MINERVA

means two+ tracks (# of planes>3) including a momentum analyzable muon.

5/14/2011

The y Coverage of CC-DIS Events

Accepted

means two+ tracks (# of planes>3) including a momentum analyzable muon in MINERvA.

5/14/2011

Optimization of the Empty Target Running

The empty target running increases the statistical projections by $\sim 50\%$. This has been corrected in the projected uncertainties later in this talk.

The Projected A/D CC-DIS Ratio

Curves read from: Ingo Schienbein *et al.,* Phys.Rev.D80(2009)094004; PRD77(2008)054013

Other ratios like C/D and Pb/D can be also measured. The uncertainties of the beam flux will be greatly cancelled in the ratios.

SBNW11 at Fermilab by L. Zhu

Charge Symmetry Violation Measurement

The neutrino to anti-neutrino ratio on deuterium is a direct measurement of CSV.

The 90% confidence region based on the MRST fit with $\delta = \kappa f(x)$

 $u_p - d_n = -(d_p - u_n) \equiv \delta(x)$ $f(x) = (1-x)^4 x^{-0.5} (x - 0.0909)$

At large x:

$$\frac{d^2 \sigma^{\nu D}}{d^2 \sigma^{\bar{\nu} D}} \sim \frac{d_p(x) + d_n(x)}{u_p(x) + u_n(x)} \cdot \frac{1}{(1-y)^2}$$

 $2\delta(x)/[u(x) + d(x)] \sim 1 - (1-y)^2 \frac{d^2 \sigma^{\nu D}}{d^2 \sigma^{\bar{\nu} D}}$

Deuterium vs. Helium

	Deuterium	Helium
Density	~0.169 g/cm ³ ✓	~0.114 g/cm ³
Temperature	~22K 🗸	~5K
Nuclear Effect	A=2,lightest isoscalar ✓	A=4, as dense as A=12 Carbon
Cost	Used Deuterium?	\checkmark
Safety	Flammable+Cryogenic hazard	Only cryogenic hazard 🗸

Physics Motivations with Deuterium

• Deuterium Target

►

- A/D ratio with CC-DIS events from neutrino ME beam
- ► A/D ratio with CC-DIS events from anti-neutrino ME beam
- Measurement of charge symmetry violation with CC-DIS from neutrino and anti-neutrino ME beam.

• How about Hydrogen?

Extraction of d/u at x \rightarrow 1

16

The nuclear corrections may shift d/u at $x \rightarrow 1$ from 0 to 0.5.

5/14/2011

17

Electromagnetic Interactions:

- DIS with electron beam at Jlab with minimized nuclear corrections.
 - Low momentum spectator tagging d(e,e'ps)X: BONUS 6 GeV (2011) and 12 GeV
 - ► A=3 mirror targets--Helium/Tritium: MARATHON at 12 GeV

Weak Interactions:

- Parity Violating DIS with Jlab 12 GeV upgrade on proton target
- W+/W- (l+/l-) asymmetry with proton and anti-proton collision at Fermilab
 - CDF experiment (2009)
 - D0 experiment
- DIS with neutrino and anti-neutrino beam on proton target
 - Bubble chamber experiment WA21 at CERN (1989)
 - CDHS with a tank of hydrogen at CERN (1984)

There are quite a few experiments and proposals to measure this most fundamental PDF ratio.

The Projected d/u Measurement

The uncertainties are estimated for MINERvA accepted CC-DIS events including the empty target running.

CSV Measurement with Hydrogen

19

From charged lepton data: $[F_{2n}/F_{2p}]_{D/p} = (\sigma_d - \sigma_p)/\sigma_p$ $=(4u_{n}+d_{n})/(4u_{p}+d_{p})$

From neutrino data on hydrogen assuming charge symmetry:

 $[F_{2n}/F_{2n}]_{p} = (4d_{p}+u_{p})/(4u_{p}+d_{p})$

Summary

- The high intensity neutrino and anti-neutrino beam from NuMI facility at Fermilab makes it possible to perform a statistically significant experiment on the light target.
- The measurement of the A/D ratio is very important for us to be able to include a large amount of nuclear neutrino data into the global fit of PDFs, providing the power of flavor decomposition.
- The deuterium data can be also used to measure the charge symmetry violation, which might be a possible explanation for NuTeV anomaly in the Weinberg angle.
- The challenge to use deuterium is the safety measures to handle the flammable liquid/gas as well as the availability of deuterium at low cost.
- It is technically straightforward to switch from deuterium to hydrogen. The neutrino and anti-neutrino data on hydrogen target can be used to constrain the PDFs (d/u) at high x as well as charge symmetry violation. But the sensitivity at $x \rightarrow 1$ is limited with ME beam.