Very Short Baseline Neutrino Oscillation Experiments using Cyclotron Decay-at-Rest Sources

Mike Shaevitz
Columbia University

Hints for High ∆m²~1 eV² Oscillation ⇒ Sterile Neutrinos? or Something Else?

Positive indications:

- LSND/MiniBooNE $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance signal
- MiniBooNE low-energy excess ($\nu_{\mu} \rightarrow \nu_{e}$?)
- Reactor disappearance anomaly ($v_e \rightarrow v_e$)
- Gallex-Sage reduced calibration source rate (v_e disappearance?)

Negative indications:

- CDHS and MiniBooNE restrictions on ν_{μ} disappearance
- MiniBooNE restrictions on $\overline{\nu}_{\mu}$ disappearance
- Karmen restrictions on $\overline{v}_u \rightarrow \overline{v}_e$
- Other negative results

Phenomenology of Oscillations with Sterile Neutrinos

• In sterile neutrino (3+1) models, high $\Delta m^2 \, \nu_e$ appearance comes from oscillation through ν_s

$$- \nu_{\mu} \rightarrow \nu_{e} = (\nu_{\mu} \rightarrow \nu_{s}) + (\nu_{s} \rightarrow \nu_{e})$$

- This then requires that there be ν_μ and ν_e disappearance oscillations
 - In the past, constraints on disappearance have restricted any (3+1) models but reactor anomaly has maybe relaxed this costraint
- Information on appearance and disappearance confusing
 - Differences needed between v versus v disappearance needed
 - But CPT invariance demands neutrino and antineutrino disappearance to be the same.
 - - Need to bring in (3+2) models

Example (3+1) and (3+2) Model Fits

3+1 Model:

$$P(\nu_{\mu} \to \nu_{e}) = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}x_{41} \qquad P(\nu_{e} \to \nu_{e}) = 1 - 4|U_{e4}|^{2}(1 - |U_{e4}|^{2})\sin^{2}x_{41}$$
$$= \sin^{2}2\theta_{\mu e}\sin^{2}x_{41} \qquad = 1 - \sin^{2}2\theta_{ee}\sin^{2}x_{41}$$

Example Fit: $\Delta m_{41}^2 = 0.92 \, eV^2$ $\sin^2 2\theta_{\mu e} = 0.0025$ $\sin^2 2\theta_{\mu \mu} = 0.13$ $\sin^2 2\theta_{ee} = 0.073$

G. Karagiorgi, Z. Djurcic, J. Conrad, M. Shaevitz, and M. Sorel,

Phys.Rev. D80, 073001 (2009), 0906.1997

$$x_{ij} \equiv \mathring{\Delta} m_{ij}^2 L/4E$$

3+2 Model:

$$P(\nu_{\mu} \to \nu_{e}) = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}x_{41} + P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4[(1 - |U_{\alpha4}|^{2} - |U_{\alpha5}|^{2}) \cdot 4|U_{e5}|^{2}|U_{\mu5}|^{2}\sin^{2}x_{51} + (|U_{\alpha4}|^{2}\sin^{2}x_{41} + |U_{\alpha5}|^{2}\sin^{2}x_{51}) + 8|U_{e4}U_{\mu4}U_{e5}U_{\mu5}|\sin x_{41}\sin x_{51}\cos(x_{54} + \delta)$$

$$V = V_{\alpha} + V_{\alpha} +$$

Δm_{41}^2	$ U_{e4} $	$ U_{\mu 4} $	Δm_{51}^2	$ U_{e5} $	$ U_{\mu 5} $	δ/π
0.47	0.128	0.165	0.87	0.138	0.148	1.64

J. Kopp, M. Maltoni, and

T. Schwetz (2011), 1103.4570.

(Short baseline approximation where highest mass state dominates: $\Delta m_{12}^2 \approx \Delta m_{13}^2 \approx 0$)

Next Experimental Steps

If we are seeing oscillations through sterile neutrinos, then one needs to make both appearance and disappearance oscillation searches for neutrinos and antineutrinos

- This information can prove the consistency with (3+1) and (3+2) models
- 1. Address MiniBooNE/LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance signal
- 2. Address MiniBooNE low-energy v_e excess
- 3. Very short baseline ν_e and $\overline{\nu}_e$ disappearance
- 4. Two detector ν_{μ} and $\,\overline{\nu}_{\mu}$ disappearance

CPT Invariance implies that v and v disappearance are the same

Do we need to look for both v and v disappearance?

MiniBooNE, CDHS, CCFR v_{μ} and $\overline{v_{\mu}}$ Disappearance Limits

- Stringent limits on v_{μ} disappearance from previous experiments
- Less stringent limits for $\overline{\nu}_{\mu}$ disappearance
 - Antineutrino rate low

Reactor Antineutrino Anomaly - v_e Disappearance

• Could be oscillations to sterile neutrino with $\Delta m^2 \sim 1 \text{eV}^2$ and $\sin^2 2\theta \sim 0.1$

Red line:
Oscillations
assuming 3
neutrino mixing

Blue line:
Oscillations in a
3 + 1 (sterile
neutrino) model

- $\bullet~$ Hard to design a follow-up experiment to prove there is $~\nu_{\rm e}$ disappearance
 - Current program of two detector reactor measurements will see same disappearance in near and far detectors.
 - Need to place near detector very close to be sensitive to $\Delta m^2 \sim 1$ eV² oscillations using a ~3 MeV reactor source.
 - Does source and detector size wash out oscillations?

Present Plans and Ideas

Approved program:

- 1. Increase by x2-x3 the MiniBooNE \overline{v} data over the next year \Rightarrow Reach 3 to 4 σ ?
- 2. New MicroBooNE Exp in front of MiniBooNE (2013) Liquid Argon TPC detector which can address the low-energy excess:

- Reduced background levels
- Can determine if low-energy excess due to single electron or photon events?

Other ideas:

- New one or two detector experiments for appearance and disappearance
 - At Fermilab using using new detectors in MiniBooNE beamline
 - CERN PS neutrino beam with Icarus style detectors at 130m/850m
 - Decay-at-rest beam close to large scintillator (or water) detector (LENA)
- Very short baseline v_e disappearance
 - Use high rate radioactive sources in Borexino detector
 - Small detector close (<10m) to nuclear reactor
 - Decay-at-rest beam close to a large detector (Nova, LENA, LAr_1kton)

Possible Methods for a v_e Disappearance Search

- Can search for v_e disappearance is several ways
 - Look for a deficit in the number of v_e events with respect to prediction.
 - Need to know absolute normalization of v_e flux
 - Difficult since ν_e flux in a typical ν_μ beam is a small background
 - Large backgrounds to isolating $v_{\rm e}$ events in most detectors
 - \Rightarrow No precise v_e disappearance measurements yet
 - Look for a change in rate for v_e events versus L/E
 - In a conventional beam, poor knowledge of L and E
 - Uncertainties in $\nu_{\rm e}$ energy distribution from hard to model background processes
 - Uncertainties in v_e production point due to long decay pipes
 - Decay-at-rest beam does not have these uncertainties
 - Extremely well know energy spectrum (muon decay-at-rest spectrum)
 - Production point uncertainty <30cm from interaction length in dump
- \Rightarrow Cyclotron decay-at-rest beams is a good choice for a V_e disappearance measurement

Very-short Baseline v_e Disappearance Experiment

- Use cyclotron decay-at-rest source (almost a point source)
- Look for a change in event rate as a function of energy within a long vdetector
 - With no oscillations the rate should go as 1/L²
- Bin observed events in L/E (corrected for the 1/L²) to search for oscillations

Decay-at-rest Beam Can Also be Good for $\nu_{\mu} \rightarrow \nu_{e}$ Search

- With cyclotron source close to detector, rate is very high
 - Much of the physics I will show can be done with lower power than DAEdALUS, so these machines can be prototypes for DAEdALUS
- Use inverse beta-decay (IBD) to isolate the $\overline{\nu}_e$ signal
- Need to use delayed coincidence between outgoing positron and neutron capture to reduce background from ν_e CC scatters
 - Detector needs to be able to see neutron capture so need:
 - free hydrogen (scintillator or water)
 - (or dope detector with Gadolinium.)

Decay-at-Rest (or Beam Dump) Neutrino Source

Each π^+ decay gives one v_μ , one v_e , and one $\overline{v_\mu}$ so measuring any of these will set the neutrino flux normalization.

Energy Spectrum for π Decay-at-Rest Beam (No uncertainty in energy spectrum)

Short-baseline Neutrino Oscillation Waves in Ultra-large Liquid Scintillator Detectors

Sanjib Kumar Agarwalla^a, J.M. Conrad^b, M.H. Shaevitz^c

^a Instituto de Física Corpuscular, CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia, Spain ^b Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

^c Department of Physics, Columbia University, New York, New York 10027, USA

For these studies assume:

100 kW cyclotron DAR source over 1-2 years \Rightarrow 4.0e21 v_e and 4.0e21 \overline{v}_{μ} Intrinsic \overline{v}_e background from π^- assumed to be at the 4x10⁻⁴ level Also, would run 50% beam-on and 50% beam-off to measure backgrounds

Processes and Cross Sections for Osc Study

Neutrino energy [MeV]

- $v_e \rightarrow v_e$ Disappearance
 - Process: ν_e + $^{12}C \rightarrow e^-$ + $^{12}\,N_{gs}$
 - Look for an oscillatory change in v_e rate with L/E
 - Threshold = 17.3 MeV
 - $E_{vis} = E_v 17.3 \text{ MeV}$
- $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Appearance
 - Process: $\overline{\nu}_e + p \rightarrow e^+ + n$
 - Detector needs to provide free hydrogen targets and be able to detector the capture of the outgoing n
 - Threshold = 1.8 MeV
 - $E_{vis} = E_v 0.8 \text{ MeV}$

LENA Scintillation Detector (Part of the European LAGUNA Project)

- 50 kton fiducial mass
- 100 m tall by 30 m diameter
- Low detection threshold down to 200 keV
- Energy resolution 10% / √E(MeV)
- Clear coincidence signal for \overline{v}_e IBD events (\overline{v}_e + p \rightarrow e⁺ + n)
- Deep location (4000 mwe) so negligible cosmic muon backgrounds
- Energy cuts:
 - Appearance: $E_v > 20 \text{ MeV}$
 - Disappearance: E_v > 33 MeV

Visible Energy Reduced by Q-value

- Visible energy cut E_{vis}> ~20 MeV
 - Reduce backgrounds
 - Good trigger and measurement eff
- Implies effective Ε_ν cut
 - Appearance ⇒ E_ν > 20 MeV
 - − Disappearance \Rightarrow E_v > 33 or 37 MeV

Appearance Mode Analysis

- Bin and fit $\overline{v}_e + p \rightarrow e^+ + n$ data as a function of L/E
 - Include normalization uncertainty of 10% mainly due to neutrino flux
 - Include intrinsic v_e background (4e-4 level) with 20% uncertainty

(3+2) Model $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Sensitivity: LENA with DAR Source

- Consider LENA type detectors with various total fiducial mass
- Compare to Kopp et al. (Ref. A) and Karagiorgi et al. (Ref. B) (3+2) best fits

Event Rates

100 kW cyclotron with 4e21 \overline{v}_{μ} 's

Fiducial Mass	Radius	Height	Signal	Signal	Intrinsic $\bar{\nu}_e$
			(A : Ref. [25])	(B : Ref. [24])	Background
50 kt	13.58 m	100 m	12985	32646	1450
25 kt	10.78 m	79.37 m	7787	18356	875
10 kt	7.94 m	58.48 m	3753	7964	443
5 kt	6.3 m	46.42 m	2080	4044	261

Total Neutrino Flux needed to exclude (3+2) Best Fits at 5σ for Ref. A and Ref. B

Fiducial Mass	Flux	Flux	
	(A : Ref. [25])	(B : Ref. [24])	
50 kt	0.912×10^{19}	0.302×10^{19}	
25 kt	1.535×10^{19}	0.539×10^{19}	
10 kt	3.235×10^{19}	1.27×10^{19}	
5 kt	5.935×10^{19}	2.6×10^{19}	

$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Sensitivity (3+1) at 5 σ LENA with DAR Source

Disappearance Mode Analysis

- Bin and fit ν_e + $^{12}C \rightarrow e^-$ + $^{12}\,N_{gs}$ data as a function of L/E
 - Include normalization uncertainty of 15% due to neutrino flux and xsec uncertainties
 - Negligible background from cosmic muons since beam $\nu_{\rm e}$ CC event rate is very high and detector is under 4000 mwe of shielding.

(3+1) and (3+2) Examples from Kopp, Maltoni, Schwetz, (2011) 1103.4570

(3+2) Model $v_e \rightarrow v_e$ Disappearance Sensitivity: LENA with DAR Source

- Again consider LENA type detectors with various total fiducial mass
- Compare to Kopp et al. (Ref. A) and Karagiorgi et al. (Ref. B) (3+2) best fits

Event Rates

100 kW cyclotron with 4e21 v.'s

Fiducial Mass	Radius	Length	Evts w/ Osc	Evts w/ Osc	Evts, No Osc
			(A : Ref. [25])	(B : Ref. [24])	
50 kt	13.58 m	100 m	170191	139119	181672
25 kt	10.78 m	79.37 m	102726	85271	109590
10 kt	7.94 m	58.48 m	52105	43940	55439
5 kt	6.3 m	46.42 m	30874	26321	32735

Total Neutrino Flux needed to exclude (3+2) Best Fits at 3σ for Ref. A and Ref. B

v_e Disappearance (3+1): LENA with DAR Source

3+1 Type Model with simple two-neutrino approximation

Results for: 100 kW, 4e21 nu's and with various fiducial masses

Triangle and the bullet (3+1) best-fit values for all reactor data with old and new fluxes.

But we will have a new very large scintillator detector soon ⇒ The Nova Experiment

Nova Experiment

- Detector mass 14 kton
 - CH₂ Scintillator Target 30% PVC
- 15.7m x 15.7m x 67m long
- Nova not made to detect low enegy signal
 - Plan to use beam gate to reduce cosmic bkgnd
- Nova can only probably do v_e disappearance
 - Cannot detect the 2.2 MeV gamma from neutron capture on hydrogen
- Energy resolution 15% / √E(MeV)
- Very little shielding 3m of earth
- Signal is 3,400 (20kW) to 34,000 evt/yr (100kW)
- Cosmic-ray background from stopping muon producing Michel electron decays
 - 10¹⁰ stopping muons need to be vetoed down to 10,000 event per year
 - For studies, consider backgrounds from 10,000 to 50,000

Nova Experiment

Possible Cyclotron Location: Nova Experiment

Nova: Rate Ratio vs L/E

1 year of data

Nova: nue-Carbon Disappearance Search in 65m Detector @ 20m with sinsq2th=0.10 (200 kW DAR Source with Enue > 20 MeV)

(3+2) Model $v_e \rightarrow v_e$ Disappearance Sensitivity: Nova with DAR Source

- Results for Nova assuming various background rates
- Compare to Kopp et al. (Ref. A) and Karagiorgi et al. (Ref. B) (3+2) best fits

Event Rates

100 kW cyclotron with 4e21 v_e 's

Fiducial	Length	Breadth	Height	Evts w/ Osc	Evts w/ Osc	Evts, No Osc
Mass				(A : Ref. [25])	(B : Ref. [24])	
14 kt	67 m	15.7 m	15.7 m	32388	27407	34415

Total Neutrino Flux
needed to exclude
(3+2) Best Fits at 3σ
for Ref. A and Ref. B

Total	Flux	Flux	
Background	(A : Ref. [25])	(B : Ref. [24])	
50000	5.9×10^{21}	1.325×10^{21}	
25000	4.615×10^{21}	0.963×10^{21}	
10000	3.408×10^{21}	0.636×10^{21}	
0	1.742×10^{21}	0.0945×10^{21}	

v_e Disappearance (3+1): Nova with DAR Source

3+1 Type Model with simple two-neutrino approximation

Results for: 100 kW, 4e21 nu's (1 MW, 4e22 nu's) and with various background rates

Triangle and the bullet (3+1) best-fit values for all reactor data with old and new fluxes.

Comparison: Nova vs LENA

Detector	$NO\nu A$ Far	LENA	
Characteristics	Detector		
Shape	Rectangular	Cylindrical	
Fiducial Mass	14 kt	(5-50) kt	
Overburden	3 m earth-equivalent	1450 m of rock/4060 m.w.e.	
		@ Pyhäsalmi	
Solvent	CH_2	LAB $(C_{18}H_{30})$	
Threshold	38 MeV (Dis)	20 MeV (App)	
T in eshold	36 We v (Bis)	33 MeV (Dis)	
Detection Efficiency	50% (Dis)	90% (App)	
	5070 (DIS)	80% (Dis)	

Large (1 - 2 kton) Liquid Argon Detector Also a Possible DAR Detector for a v_e Disappearance Search

(Some Preliminary Studies)

New LAr Detector on the Booster Neutrino Beamline LAr1kton

- Add a large LAr detector in the MiniBooNE Booster Neutrino Beam
 - Address MiniBooNE/LSND $v_{\mu} \rightarrow v_{e}$ appearance appearance signal with better statistics (efficiency) and less background
- Address MiniBooNE low-energy v_e excess
 - MicroBooNE will show if this excess is electrons or photon
 - LAr1kton could explore oscillation parameters with high statistics and different L
- Two detector v_{μ} and \overline{v}_{μ} disappearance
 - New near detector or move MicroBooNE to near location
 - Also, may use 540m to 800m comparison
- Very short baseline v_e disappearance with cyclotron DAR beam

Xsec much larger for Argon than Scintillator (Carbon)

1 kton Liq. Argon Detector (10m x 7m x 20m)

LAr1kton: Rate Ratio vs L/E

>3 sigma Signal Regions (right of curves)

Triangle and the bullet (3+1) best-fit values for all reactor data with old and new fluxes.

Conclusions

- If sterile neutrino hints hold up, need to quantify neutrino oscillations in all channels:
 - $-v_e$ and $\overline{v_e}$ appearance
 - ν_{μ} and $\overline{\nu}_{\mu}$ disappearance
 - $-v_e$ and v_e disappearance
- Cyclotron decay-at-beam can provide a unique neutrino source to use in searches for very short baseline oscillations associated with:
 - v_e appearance
 - $-v_e$ disappearance

Using large scintillator or liquid argon detectors.

Backups

NO ν A Far Detector	LENA	
Rectangular	Cylindrical	
14 kt	(5-50) kt	
3 m earth-equivalent	1450 m of rock/4060 m.w.e.	
	@ Pyhäsalmi	
CH_2	LAB $(C_{18}H_{30})$	
38 MoV (Die)	$20\mathrm{MeV}\ (\mathrm{App})$	
30 MeV (DIS)	33 MeV (Dis)	
50% (Dis)	90% (App)	
9070 (DIS)	80% (Dis)	
$15\%\sqrt{\mathrm{E}}$	$10\%\sqrt{\rm E}$ [58]	
1070 V 22		
20% (Dis)	10% (App)	
2070 (1210)	15% (Dis)	
5% [Non-beam] (Dis)	20% [Intrinsic $\bar{\nu}_e$, 4×10^{-4}] (App)	
3,0 [2.012.000111] (2.10)	_	
	Detector Rectangular 14 kt 3 m earth-equivalent	