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2Hints for High Δm2~1 eV2 Oscillation
⇒ Sterile Neutrinos? or Something Else?

• Positive indications:
– LSND/MiniBooNEνµ→νe appearance signal
– MiniBooNE low-energy excess ( νµ→ νe ?)
– Reactor disappearance anomaly (νe→νe )
– Gallex-Sage reduced calibration source rate (νe disappearance?)

• Negative indications:
– CDHS and MiniBooNE restrictions on νµ disappearance
– MiniBooNE restrictions onνµ disappearance
– Karmen restrictions onνµ→νe

– Other negative results
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Phenomenology of Oscillations with Sterile Neutrinos

• In sterile neutrino (3+1) models,
high Δm2 νe appearance comes from
oscillation through νs

– νµ → νe =  (νµ → νs) + (νs → νe)

• This then requires that there be νµ and
νe disappearance oscillations
– In the past, constraints on

disappearance have restricted any
(3+1) models but reactor anomaly
has maybe relaxed this costraint

• Information on appearance and
disappearance confusing
– Differences needed between ν

versusν disappearance needed
• But CPT invariance demands

neutrino and antineutrino
disappearance to be the same.

– Also differences between νµ→ νe
and νe→νe
• Need to bring in (3+2) models

(3+1) Models

(3+2) Models



4Example (3+1) and (3+2) Model Fits

P !µ "!e( ) = 4 Ue4
2 Uµ4

2
sin2 x41

= sin2 2#µe sin
2 x41

(Short baseline approximation where highest mass state dominates:  !m12
2 " !m13

2 " 0)

Example Fit:  !m41
2 = 0.92eV 2 sin2 2"µe = 0.0025 sin2 2"µµ = 0.13 sin2 2"ee = 0.073

G. Karagiorgi, Z. Djurcic, J. Conrad, M. Shaevitz, and M. Sorel, 
Phys.Rev. D80, 073001 (2009), 0906.1997

3+1 Model:

3+2 Model:

± ν vsν

J. Kopp, M. Maltoni, and 
T. Schwetz (2011), 1103.4570.
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Next Experimental Steps

If we are seeing oscillations through sterile neutrinos, then one
needs to make both appearance and disappearance oscillation
searches for neutrinos and antineutrinos
– This information can prove the consistency with (3+1) and (3+2)

models

1. Address MiniBooNE/LSND νµ→νe appearance signal

2. Address MiniBooNE low-energy νe excess

3. Very short baseline νe andνe disappearance

4. Two detector νµ andνµ disappearance

CPT Invariance
implies that 
ν andν 
disappearance
are the same

Do we need to look 
for both ν andν 
disappearance?
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MiniBooNE, CDHS, CCFR νµ andνµ Disappearance Limits

• Stringent limits on νµ disappearance from previous  experiments
• Less stringent limits forνµ disappearance

– Antineutrino rate low

Using low-energy beams
it is a challenge to collect 
enoughνµ statistics 
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Reactor Antineutrino Anomaly - νe Disappearance
•	
  	
  Could	
  be	
  oscilla.ons	
  to	
  sterile	
  neutrino	
  with	
  Δm2~1eV2	
  and	
  sin22θ~0.1

Red	
  line:
Oscilla.ons
assuming	
  3

neutrino	
  mixing

Blue	
  line:
Oscilla.ons	
  in	
  a
3	
  +	
  1	
  (sterile

neutrino)	
  model
G. Mention et al., hep-ex/1101.2755

• Hard	
  to	
  design	
  a	
  follow-­‐up	
  experiment	
  to	
  prove	
  there	
  isνe	
  disappearance
– Current	
  program	
  of	
  two	
  detector	
  reactor	
  measurements	
  will	
  see	
  same	
  disappearance

in	
  near	
  and	
  far	
  detectors.
– Need	
  to	
  place	
  near	
  detector	
  very	
  close	
  to	
  be	
  sensi.ve	
  to	
  Δm2	
  ~	
  1	
  eV2	
  oscilla.ons	
  using

a	
  ~3	
  MeV	
  reactor	
  source.
• Does	
  source	
  and	
  detector	
  size	
  wash	
  out	
  oscilla.ons	
  ?



8Present Plans and Ideas
Approved program:
1. Increase by x2-x3 the MiniBooNEν data over the next year

⇒ Reach 3 to 4 σ?

2. New MicroBooNE Exp in front of MiniBooNE (2013)
Liquid Argon TPC detector which can address the
low-energy excess:

– Reduced background levels
– Can determine if low-energy excess due to single electron or

photon events?
Other ideas:
• New one or two detector experiments for appearance and disappearance

– At Fermilab using using new detectors in MiniBooNE beamline
– CERN PS neutrino beam with Icarus style detectors at 130m/850m
–  Decay-at-rest beam close to large scintillator (or water) detector (LENA)

• Very short baseline νe disappearance
– Use high rate radioactive sources in Borexino detector
– Small detector close (<10m) to nuclear reactor
– Decay-at-rest beam close to a large detector (Nova, LENA, LAr_1kton)
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Possible Methods for a νe Disappearance Search

• Can search for νe disappearance is several ways
– Look for a deficit in the number of νe events with respect to prediction.

• Need to know absolute normalization of νe flux
• Difficult since νe flux in a typical νµ beam is a small background
• Large backgrounds to isolating νe events in most detectors
⇒  No precise νe disappearance measurements yet

– Look for a change in rate for νe events versus L/E
• In a conventional beam, poor knowledge of L and E

– Uncertainties in νe energy distribution from hard to model background
processes

– Uncertainties in νe production point due to long decay pipes
• Decay-at-rest beam does not have these uncertainties

– Extremely well know energy spectrum (muon decay-at-rest spectrum)
– Production point uncertainty <30cm from interaction length in dump

⇒  Cyclotron decay-at-rest beams is a good choice for a νe
disappearance measurement
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Very-short Baseline νe Disappearance Experiment

• Use cyclotron decay-at-rest source (almost a point source)

• Look for a change in event rate as a function of energy within a long ν-
detector
– With no oscillations the rate should go as 1/L2

• Bin observed events in L/E (corrected for the 1/L2) to search for
oscillations

ν Detector

Cyclotron

D
um

p



11Decay-at-rest Beam Can Also be Good
 forνµ →νe Search

• With cyclotron source close to detector, rate is very high
– Much of the physics I will show can be done with lower power

than DAEdALUS, so these machines can be prototypes for
DAEdALUS

• Use inverse beta-decay (IBD) to isolate theνe signal

• Need to use delayed coincidence between outgoing positron and
neutron capture to reduce background from νe CC scatters
– Detector needs to be able to see neutron capture so need:

• free hydrogen (scintillator or water)
• (or dope detector with Gadolinium.)
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Decay-at-Rest (or Beam Dump) Neutrino Source

protonπ+

µ+

νµ

e+

Cyclotron (~800 MeV KE proton)

νe

νµ π−

νe

Captures
before
decay

Oscillations?

Dump

Each π+ decay gives one νµ , one νe , and oneνµ  
so measuring any of these will set the neutrino flux normalization.

Decay-at-Rest
gives isotropic
neutrino source

Used for
disappearance
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Energy Spectrum for π Decay-at-Rest Beam
(No uncertainty in energy spectrum)
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For these studies assume:
      100 kW cyclotron DAR source over 1-2 years ⇒  4.0e21 νe and 4.0e21νµ
       Intrinsic νe background from π− assumed to be at the 4x10-4 level

Also, would run 50% beam-on and 50% beam-off to measure backgrounds
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Processes and Cross Sections for Osc Study

• νe → νe Disappearance
– Process:

νe + 12C → e− + 12 Ngs

– Look for an oscillatory change
in νe rate with L/E

– Threshold = 17.3 MeV
• Evis = Eν - 17.3 MeV

• νµ →νe Appearance
– Process:

νe + p → e+ + n
– Detector needs to provide

free hydrogen targets and be
able to detector the capture of
the outgoing n

– Threshold = 1.8 MeV
• Evis = Eν - 0.8 MeV



16LENA Scintillation Detector
(Part of the European LAGUNA Project)

• 50 kton fiducial mass

• 100 m tall by 30 m diameter

• Low detection threshold down to 200
keV

• Energy resolution 10% / √E(MeV)

• Clear coincidence signal forνe IBD
events (νe + p → e+ + n)

• Deep location (4000 mwe) so
negligible cosmic muon backgrounds

• Energy cuts:
– Appearance: Eν > 20 MeV
– Disappearance: Eν > 33 MeV

100m

cyclotronν source



17
Visible Energy Reduced by Q-value

• Visible energy cut Evis> ~20 MeV
– Reduce backgrounds
– Good trigger and measurement eff

• Implies effective Eν cut
– Appearance ⇒ Eν > 20 MeV
– Disappearance ⇒ Eν > 33 or 37 MeV

Appearance

Disappearance



18Appearance Mode Analysis

• Bin and fit νe + p → e+ + n  data as a function of L/E
– Include normalization uncertainty of 10% mainly due to neutrino flux
– Include intrinsicνe background (4e-4 level) with 20% uncertainty

(3+ 2) Fit Kopp, Maltoni, 
Schwetz (2011), 1103.4570.

(3+1) Fit
Karagiorgi et al.
∆m2

41 = 0.57 
sin22θµe = 0.0097



19(3+2) Modelνµ →νe Sensitivity:
LENA with DAR Source

• Consider LENA type detectors with various total fiducial mass
• Compare to Kopp et al. (Ref. A) and Karagiorgi et al. (Ref. B)

(3+2) best fits
100 kW cyclotron with 4e21νµ’s Event Rates

Total Neutrino Flux

needed to exclude
(3+2) Best Fits at 5σ

for Ref. A and Ref. B



20νµ →νe Sensitivity (3+1) at 5σ
LENA with DAR Source

3+1 Type Model
with simple 
two-neutrino

Results for: 
100 kW, 4e21 nu’s
10 kW, 4e20 nu’s
and with various
fiducial masses

A 5 kton
scintillator detector

combined with a
small 10 kW source

can test the 
MiniBooNE/LSND

signal at 5 s !



21Disappearance Mode Analysis

• Bin and fit νe + 12C → e− + 12 Ngs  data as a function of L/E
– Include normalization uncertainty of 15% due to neutrino flux and xsec

uncertainties
– Negligible background from cosmic muons since beam νe CC event rate

is very high and detector is under 4000 mwe of shielding.

(3+1) and (3+2) Examples

from Kopp, Maltoni, Schwetz,

(2011) 1103.4570



22(3+2) Model νe → νe Disappearance Sensitivity:
LENA with DAR Source

• Again consider LENA type detectors with various total fiducial mass
• Compare to Kopp et al. (Ref. A) and Karagiorgi et al. (Ref. B)  (3+2)

best fits
100 kW cyclotron with 4e21 νe’s Event Rates

Total Neutrino Flux

needed to exclude
(3+2) Best Fits at 3σ

for Ref. A and Ref. B
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νe Disappearance (3+1): LENA with DAR Source

3+1 Type Model
with simple 
two-neutrino
approximation

Results for: 
100 kW, 4e21 nu’s
and with various
fiducial masses

Triangle and the bullet 
(3+1) best-fit values 
for all reactor data 
with old and new 
fluxes.
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But we will have a new very large scintillator
detector soon

⇒ The Nova Experiment
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Nova Experiment

• Detector mass 14 kton
– CH2 Scintillator Target - 30% PVC

• 15.7m x 15.7m x 67m long

• Nova not made to detect low enegy signal
– Plan to use beam gate to reduce cosmic bkgnd

• Nova can only probably do νe disappearance
– Cannot detect the 2.2 MeV gamma from neutron

capture on hydrogen

• Energy resolution 15% / √E(MeV)

• Very little shielding - 3m of earth

• Signal is 3,400 (20kW) to 34,000 evt/yr (100kW)

• Cosmic-ray background from stopping muon
producing Michel electron decays

– 1010 stopping muons need to be vetoed down to
10,000 event per year

– For studies, consider backgrounds from 10,000 to
50,000



26Nova Experiment



27Possible Cyclotron Location:
Nova Experiment
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Nova: Rate Ratio vs L/E

1 year of data



29(3+2) Model νe → νe Disappearance Sensitivity:
Nova with DAR Source

• Results for Nova assuming various background rates
• Compare to Kopp et al. (Ref. A) and Karagiorgi et al. (Ref. B)  (3+2)

best fits
100 kW cyclotron with 4e21 νe’s Event Rates

Total Neutrino Flux

needed to exclude
(3+2) Best Fits at 3σ

for Ref. A and Ref. B
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νe Disappearance (3+1): Nova with DAR Source

3+1 Type Model
with simple 
two-neutrino
approximation

Results for: 
100 kW, 4e21 nu’s
(1 MW, 4e22 nu’s)
and with various
background rates

Triangle and the bullet 
(3+1) best-fit values 
for all reactor data 
with old and new 
fluxes.



31Comparison: Nova vs LENA
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Large (1 - 2 kton) Liquid Argon Detector
Also a Possible DAR Detector
for a νe Disappearance Search

(Some Preliminary Studies)



33New LAr Detector on the Booster Neutrino Beamline
LAr1kton

• Add a large LAr detector in the MiniBooNE Booster Neutrino Beam
– Address MiniBooNE/LSNDνµ→νe appearance appearance signal with

better statistics (efficiency) and less background

• Address MiniBooNE low-energy νe excess
– MicroBooNE will show if this excess is electrons or photon
– LAr1kton could explore oscillation parameters with high statistics and

different L

• Two detector νµ andνµ disappearance
– New near detector or move MicroBooNE to near location
– Also, may use 540m to 800m comparison

• Very short baseline νe disappearance with cyclotron DAR beam
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540m

800m

MiniBooNE

LAr1kton

450m
MicroBooNE

New Near
200m
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Xsec much larger for Argon than Scintillator (Carbon)



361 kton Liq. Argon Detector (10m x 7m x 20m)

20 m   

30 MeV νe Event Displays
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LAr1kton: Rate Ratio vs L/E

1 year of data

Preliminary
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Triangle and the bullet 
(3+1) best-fit values 
for all reactor data 
with old and new 
fluxes.

Preliminary
1 year of data
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Conclusions

• If sterile neutrino hints hold up, need to quantify neutrino
oscillations in all channels:
– νe andνe appearance
– νµ andνµ disappearance
– νe andνe disappearance

• Cyclotron decay-at-beam can provide a unique neutrino source
to use in searches for  very short baseline oscillations associated
with:
– νe appearance
– νe disappearance

    Using large scintillator or liquid argon detectors.
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Backups
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