

Booster Corrector System Review

10 October 2006

David Harding

Contents

- Design
- Production plan

Requirements

	Integrated Field	Slew Rate	
Horizontal Dipole	0.0090 T-m	3.24 T-m/s	
Vertical Dipole	0.0150 T-m	3.24 T-m/s	
Normal Quadrupole	0.1600 T-m/m	88 T-m/m/s	
Skew Quadrupole	0.0080 T-m/m	/m 0.8 T-m/m/s	
Sextupole (both)	1.4100 T-m/m ²	2,350 T-m/m ² /s	

Magnet Cross-section

Orange – horizontal dipole

Bright green – vertical dipole

Open green – normal quadrupole

Red – skew quadrupole

Magenta – normal sextupole

Blue – skew sextupole

Normal Dipole Model

Flux lines

Yoke flux density

Quadrupole Models

Normal quadrupole flux lines and yolk flux density

Skew quadrupole flux lines

Sextupole Model

Flux lines

Yoke flux density

Magnet Cross-section

Orange – horizontal dipole

Bright green – vertical dipole

Open green – normal quadrupole

Red – skew quadrupole

Magenta – normal sextupole

Blue – skew sextupole

PROTON PLAN Prototype Coil Fabrication

Prototype Core Assembly

Magnet Assembly

Prototype Assembly

PROTON PLAN Prototype Magnet at MTF

Finished Magnet

PROTON PLAN Lessons from the Prototype Fabrication

- Coil winding not as difficult as we feared
 - > We hope that this translates into good prices on the coil winding contract.
- Heat transfer to water exceeds expectations
 - > We can probably even run with one water circuit blocked.
- There are subtleties in core stacking and bonding
 - > We have built new stacking tooling to improve on early, crooked cores.
- QA will be essential
 - > We were able to recover from losing two turns on the first coil package wound, but we don't want to make a habit of it.
- Will continue to work on assembly procedures
 - > We have not yet potted this magnet.

Production Plan

- Contract for coil fabrication
- Contract for core fabrication
- Assemble magnets at Fermilab
- Test magnets at Fermilab

Contracts

- > Base quantity for Long Straight Sections + spares
- > Option for Short Straight Sections

Request For Information sent in June

- > Part drawings
- > Specifications
- > Tooling drawings
- > Traveler
- Video of our coil winding
- Responses received in August vendors interested
- Visited domestic vendors in August
- Requests For Proposals out, due 18 October
- Award contract November, will try to accelerate
- Start deliveries February, will try to accelerate

Magnet Assembly

- Six parallel assembly stations
 - > Coils assembled onto cores
 - > Cores built into magnet on rotating mandrel
 - Water lines trimmed and brazed
 - > "Dry" connection of leads and in-process check
 - > Normal windings trimmed and brazed
 - > Full magnet testing
 - > Ends potted
- Will consume all technicians available (adding, training two contract techs this fall)
- Buying extra coils, cores in case we lose a few

- Incoming inspection of components
 - > Coils (100%)
 - Dedicated system to check inductance (number of turns)
 - Hi-pot
 - · Water flow, pressure
 - Gauge to check dimensions
 - > Cores (% to be determined)
 - Flatness
 - · Length

QA/QC (continued)

- "Travelers" to manage assembly
- In-process inspection
 - > Water flow, pressure
 - > Total magnet electrical checks
 - > Dedicated field polarity tester to check connections
- Magnet measurements before potting
 - > 100% testing
 - > 1.5 day per magnet
 - > Specific measurements to be determined
- In-process inspection (continued)
 - > Repeat electrical measurements before potting
 - > Repeat electrical measurements after potting

Safety

- The magnet fabrication and measurements are typical of the Technical Division projects.
 - > Every activity is guided by a "traveler" that is reviewed
 - > Technicians are trained in general and job-specific activities such as brazing
 - > The test stand was subject to a review before it received its operational readiness clearance.
- The greatest hazard to TD and vendor technicians is probably repetitive strain injuries.
 - > We are very conscious of the danger and are working to optimize the ergonomics
- All Fermilab-standard ES&H language will be in the contracts with vendors, will be evaluated in selecting the primary vendors, and will be monitored.

Risks

Delivery of components

- > Work with management, BSS Procurements Department
- > Detailed information provided to potential vendors
- > Careful selection of vendors
- > Close monitoring of vendor performance

Assembly errors

- > Quality Assurance see earlier slide for sample details
- Equipment failures
 - > Spares of electronics
 - > Overtime
- · Extra labor needed
 - > Other technicians from TD
 - > Overtime

Milestones

- 11/3/06 Award coil contract
- 11/14/06 Award core contract
- 12/13/06 Vendors production plan approval
- 1/10/07 Vendors start production
- 1/31/07 Receive first core set
- 2/2/07 Receive first coil set
- 2/14/07 Start assembly first magnet
- 3/2/07 Start assembly second magnet
- 4/5/07 First magnet to MTF
- 5/18/07 First magnet complete
- 6/6/07 Twelve magnets complete
- 7/11/07 Twenty-four magnets complete

Cost Estimate

Item	Per magnet	Unit cost	Total for 24
Components	1 lot	\$ 26,200	\$ 628,800
Assembly labor	203 hr	\$ 9,100	\$ 218,400
EDIA			\$ 117,500
Total			\$ 964,700

Summary

- We have a robust design
- We have a sound production plan
- We have a vigorous QA/QC plan
- · We are ready to move forward with procurements