
System factors
affecting throughput

Matt Crawford
Fermilab

Context of this work
• Of the many and varied causes of poor

network performance, many turn out to be
faults on the end systems.

• Some are configuration issues;

• Some are inherent design problems (or
unfavorable trade-offs);

• Some look exactly like a bad network.

Linux Oddities

• Memory

• Interrupt Handling

• Scheduler Quirks

Memory Use
• Linux default TCP buffers suit local-area

communications, not intercontinental.

• Applying the well-known BW×Delay
cookbook to dCache storage systems led
to frequent hangs & crashes.

• System & network wizards swing into
action ...

• Dual 3.2GHz Xeon (32-bit)
hosts, 8GB RAM, 2x1GE.

• Original complaint was “too
many” concurrent transfers
required to meet ingest goals
from CERN.

• Cookbook (eg: PSC, LBNL)
applied – 5MB window limits.

• Processes die; systems hang;
logs show many memory
allocation failures (!)

high mem - 7 GBytes

low mem - 896 MBytes
DMA mem - 16 MBytes

dcache application
(1.5 GB)
Linux disk cache
(5.5 GB)

networking buffers,
page tables, etc

Unswappable & always mapped
area “lowmem” limited to 896 MB.
Apx. 300MB fixed allocations,
leaving 600MB for kmalloc.
Unused highmem→disk buffers.
Hypothesis: 4GB would serve
better, due to smaller page tables.

• Single-stream TCP @ 1Gb/s FNAL–CERN
(120 ms) requires ~ 15MB windows.

• But ...

• Transfers are by GridFTP, 10-20 streams.

• Many transfers are local or within US.

• Found, for example, transfers to MIT
consuming 10x more kernel buffer than
the amount of data in flight!

• Rethink the window sizes.
rmem = 4096 87380 1048576
wmem = 4096 32768 131072

Linux is ruthless!
• Swapper tries (mostly in vain) to free

memory for more network buffers; cycles
would be better spent draining buffers.

• Linux grants memory reservation requests
“optimistically,” since many large requests a
for a process fork which will exec before
consuming many new pages.

• When optimism proves unjustified, the
“OOM Killer” brutally reclaims space.

Interrupt Handling
• NIC driver “NAPI” mode (New API)

handles multiple input packets per
hardware interrupt; most work happens at
software interrupt (“softirq”) level.

• Host stack does limited work per softirq.

• Transmit has higher priority than receive.
⇒ Packets dropped inside host, due to lack of
servicing the receive ring buffer.

Preemption & Locks
• If the process is suspended

while receiving, the socket
data structures are locked.

• Packets arriving during that
time go on “backlog” queue;
are not processed by TCP!

• Delay can be N × 100ms.
Application Traffic Sink

Ringbuffer

Backlog

IP

Processing

Sock

Locked?

Y

Receiving process

sleeps for data?

Y

PrequeueN

tcp_v4_do_rcv()

N

InSequence

Y

N

N

N

Out of Sequence

Queue

Receive

Queue

TCP

Processing

NIC

Hardware

Traffic Src

DMA

Copy to iov?

Copy to iov?

Y

Y

Fast path?

Y

N

A

B

Fun with Scheduling
• Linux scheduler rewards interactive

processes in two ways: priority boost and
extra time slices.

• Interactivity measured by accumulation of
interruptible sleep time > run time.

• A process receiving a relatively slow TCP
stream fits that criterion all too well – can
starve other processes.

• And, in fact, a slow stream will get better
service than a fast stream.

Taming the pseudo-
interactive receiver

