
Linux Kernel Issues in End Host
Systems

Wenji Wu, Matt Crawford

US-LHC End-to-End Networking Meeting
Fermi National Accelerator Lab, 2006
wenji@fnal.gov; crawdad@fnal.gov

1

mailto:wenji@fnal.gov
mailto:crawdad@fnal.gov

Topics

Background
Linux 2.6 Characteristics
Kernel Memory Layout vs. Packet
Receiving
Kernel Preemptivity vs. Linux TCP
Performance
Interactivity vs. Fairness in Networked
Linux Systems

2

What, Where, and How are the
bottlenecks of Network Applications?

Networks?
Network End Systems?

Linux is widely used in the HEP community

Background
3

Linux 2.6 Characteristics

Preemptible Kernel
O(1) Scheduler
Improved Interactivity, more responsive
Improved Fairness
Improved Scalability

4

Kernel Memory Layout vs.
Packet Receiving

5

Linux Networking subsystem:
Packet Receiving Process

Stage 1: NIC & Device Driver
Packet is transferred from network interface card to ring buffer

Stage 2: Kernel Protocol Stack
Packet is transferred from ring buffer to a socket receive buffer

Stage 3: Data Receiving Process
Packet is copied from the socket receive buffer to the application

NIC
Hardware

Network
Application

Traffic SinkRing Buffer
Socket RCV

BufferSoftIrq
Process

Scheduler

DMA IP
Processing

TCP/UDP
Processing

SOCK RCV
SYS_CALL

Kernel Protocol Stack

TrafficSource

Data Receiving ProcessNIC & Device Driver

6

Experiment Settings

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G 1G

 Sender Receiver

CPU Two Intel Xeon CPUs (3.0 GHz) One Intel Pentium II CPU (350 MHz)
System Memory 3829 MB 256MB

NIC Tigon, 64bit-PCI bus slot at
66MHz, 1Gbps/sec, twisted pair

Syskonnect, 32bit-PCI bus slot at 33MHz,
1Gbps/sec, twisted pair

Sender & Receiver Features

Fermi Test Network

Run iperf to send data in one direction between two computer systems;
We have added instrumentation within Linux packet receiving path
Compiling Linux kernel as background system load by running make –
nj
Receive buffer size is set as 40M bytes

7

Receive ring buffer

Total number of packet descriptors in the reception ring buffer of the NIC is 384

Receive ring buffer could run out of its packet descriptors: Performance Bottleneck!

Running out
packet descriptors

8

Various TCP Receive Buffer Queues

Zoom in

Background Load 0 Background Load 10

What do the results mean?

Receive buffer size is set as 40M bytes

9

We usually configure the socket receive
buffer to the BDP.
In real world, system administrators often
configure /proc/net/ipv4/tcp_rmem high to
accommodate high BDP connections.

What could be wrong?

How to configure socket receive
buffer size?

10

Linux Virtual Address Layout
3 GB 1 GB

user kernel

scope of a process’ page table

3G/1G partition
The way Linux partition a 32-bit address space
Cover user and kernel address space at the same time
Advantage

Incurs no extra overhead (no TLB flushing) for system calls
Disadvantage

With 64 GB RAM, mem_map alone takes up 512 MB memory from
lowmem (ZONE_NORMAL).

11

Partition of Physical Memory
(Zone)

virtual
address

0xC0000000

This figure shows the partition of physical memory its
mapping to virtual address in 3G/1G layout

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM physical
address

0 16 MB 896 MB

0xF8000000 0xFFFFFFFF
vmalloc

area
kmap
area

Direct mapping Indirect mapping
Kernel

Page table

End of memory

12

Kernel Preemptivity vs. Linux
TCP Performance

13

Preemptivity vs. Linux TCP Performance
Experiment Settings

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G 1G

 Sender Receiver

CPU Two Intel Xeon CPUs (3.0 GHz) One Intel Pentium II CPU (350 MHz)
System Memory 3829 MB 256MB

NIC Tigon, 64bit-PCI bus slot at
66MHz, 1Gbps/sec, twisted pair

Syskonnect, 32bit-PCI bus slot at 33MHz,
1Gbps/sec, twisted pair

Sender & Receiver Features

Fermi Test Network

Run iperf to send data in one direction between two computer systems
We have added instrumentation within Linux packet receiving path
Compiling Linux kernel as background system load by running make –
nj
Receive buffer size is set as 40M bytes

14

Background Load 10

What, Why, and How?

Tcptrace time-sequence diagram from the sender side

15

Kernel Protocol Stack – TCP

TCP Processing- Process context

Application Traffic Sink

Ringbuffer

Backlog

IP
Processing

Sock
Locked?

Y

Receiving
Task exists?

Y

PrequeueN

tcp_v4_do_rcv()

N

InSequence

Y

N

N

N

Out of Sequence
Queue

Receive
Queue

TCP
Processing

NIC
Hardware

Traffic Src

DMA

Copy to iovec?

Copy to iovec?

Y

Y

Fast path?

Y

N

Slow path

TCP Processing- Interrupt context

Except in the case of prequeue overflow, Prequeue and
Backlog queues are processed within the process context!

Copy to iovReceive Queue
Empty?

Y

N

Prequeue
Empty?

Backlog
Empty?

Y

tcp_prequeue_process()

release_sock()

sk_backlog_rcv()

iov

return / sk_wait_data()

User Space

Kernel

sys_callentry

Application

data

tcp_recvmsg()

16

...

Active Priority Array

Priority

Task: (Priority, Time Slice)

(3, Ts1)

(139, Ts2) (139, Ts3)

CPU

0

1

2

3

138

139

Task 1

Task 2 Task 3

Expired priority Array

...

(Ts1', 2)

0

1

2

3

138

139

Task 1'

Task 1

Running

Task 1

Task Time slice runs out

Recalculate Priority, Time Slice

x

RUNQUEUE

Priority

Linux Scheduling Mechanism

17

Interactivity vs. Fairness in
Networked Linux Systems

18

Interactivity vs. Fairness Experiment
Settings

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G 1G

Sender & Receiver Features

 Fast Sender Slow Sender Receiver

Fermi Test Network

Run iperf to send data in one direction between two computer systems
We have added instrumentation within Linux kernel
Compiling Linux kernel as background system load by running make –
nj
Receive buffer size is set as 40M bytes

CPU Two Intel Xeon CPUs
(3.0 GHz)

One Intel Pentium IV
CPU (2.8 GHz)

One Intel Pentium III
CPU (1 GHz)

System Memory 3829 MB 512MB 512MB

NIC
Syskonnect, 32bit-PCI

bus slot at 33MHz,
1Gbps/sec, twisted pair

Intel PRO/1000, 32bit-
PCI bus slot at 33 MHz
1Gbps/sec, twisted pair

3COM, 3C996B-T, 32bit-
PCI bus slot at 33MHz,
1Gbps/sec, twisted pair

19

What? Why? How?

 Slow Sender Fast Sender
Load Throughput CPU Share Throughput CPU Share
BL0 436 Mbps 78.489% 464 Mbps 99.228%
BL1 443 Mbps 81.573% 241 Mbps 49.995%
BL2 438 Mbps 80.613% 159 Mbps 34.246%
BL4 430 Mbps 79.217% 97.0 Mbps 20.859%
BL8 440 Mbps 81.093% 74.2 Mbps 15.375%

20

...

Active Priority Array

Priority

Task: (Priority, Time Slice)

(3, Ts1)

(139, Ts2) (139, Ts3)

CPU

0

1

2

3

138

139

Task 1

Task 2 Task 3

Expired priority Array

...

(Ts1', 2)

0

1

2

3

138

139

Task 1'

Task 1

Running

Task 1

Task Time slice runs out

Recalculate Priority, Time Slice

x

RUNQUEUE

Priority

Linux Scheduling Mechanism

21

Network applications vs. interactivity
A sleep_avg is stored for each process: a process is
credited for its sleep time and penalized for its runtime. A
process with high sleep_avg is considered interactive,
and low sleep_avg is non-interactive.
network packets arrive at the receiver independently and
discretely; the “relatively fast” non-interactive network
process might frequently sleep to wait for network
packets. Though each sleep lasts for a short period of
time, the wait-for-packet sleeps occur frequently, more
than enough to lead to the interactivity status.
The current Linux interactivity mechanism provides the
possibilities that a non-interactive network process could
consume a high CPU share, and at the same time be
incorrectly categorized as “interactive.”

22

Slow Sender Fast Sender

...

Active Priority Array

Priority

Task: (Priority, Time Slice)

(3, Ts1)

(139, Ts2) (139, Ts3)

CPU

0

1

2

3

138

139

Task 1

Task 2 Task 3

Expired priority Array

...

(Ts1', 2)

0

1

2

3

138

139

Task 1'

Task 1

Running

Task 1

Task Time slice runs out

Recalculate Priority, Time Slice

x

RUNQUEUE

Priority

With Slow Sender, iperf in the receiver
is always categorized as interactive.

With fast sender, iperf in the receiver is
categorized as non-interactive most of
the time.

23

Contacts

Wenji Wu, wenji@fnal.gov
Matt Crawford, crawdad@fnal.gov

Wide Area Systems, Fermilab, 2006

24

mailto:wenji@fnal.gov
mailto:crawdad@fnal.gov

	Linux Kernel Issues in End Host Systems
	Topics
	Background
	Linux 2.6 Characteristics
	Kernel Memory Layout vs. Packet Receiving
	Linux Networking subsystem: Packet Receiving Process
	Experiment Settings
	Various TCP Receive Buffer Queues
	How to configure socket receive buffer size?
	Kernel Preemptivity vs. Linux TCP Performance
	Preemptivity vs. Linux TCP Performance Experiment Settings
	Kernel Protocol Stack – TCP
	Interactivity vs. Fairness in Networked Linux Systems
	Interactivity vs. Fairness Experiment Settings
	What? Why? How?
	Linux Scheduling Mechanism
	Network applications vs. interactivity
	Contacts

