Emittance simulations

Pavel Snopok
IIT/Fermilab

April 8, 2011

Emittance calculation

- $\Sigma=\operatorname{cov}\left(x, p_{x}, y, p_{y}, t,-E\right) ; \varepsilon_{6 D}=\frac{c}{m^{3}} \sqrt{\operatorname{det} \Sigma}$;
- $\Sigma_{T}=\operatorname{cov}\left(x, p_{x}, y, p_{y}\right) ; \varepsilon_{T}=\frac{1}{m} \sqrt{\sqrt{\operatorname{det} \Sigma_{T}}}$;
- $\Sigma_{L}=\operatorname{cov}(t,-E) ; \varepsilon_{L}=\frac{c}{m} \sqrt{\operatorname{det} \Sigma_{L}}$;
- $\lambda_{1}, \lambda_{2}, \lambda_{3}$ - eigen-values of $J \Sigma$, where J is a block diagonal matrix made up of three blocks $J_{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
- $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|,\left|\lambda_{3}\right|$ - eigen-emittances.
- I compare rms emittances with eigen-emittances for linear and nonlinear cases for drift and MICE Step IV.

Beam parameters

- $P_{\text {ref }}=200 \mathrm{MeV} / \mathrm{c}$;
- gaussian beam,
- normalized longitudinal emittance 90 mm ;
- normalized transverse emittance 6 mm ;
- $\sigma_{x}=\sigma_{y}=37 \mathrm{~mm}$;
- $\sigma_{p_{x}}=\sigma_{p_{y}}=17 \mathrm{MeV} / \mathrm{c}$;
- $\sigma_{p_{z}}=29 \mathrm{MeV} / \mathrm{c}$;
- $\sigma_{t}=1.25 \mathrm{~ns}$;
- no dispersion.
- Phase space is large, paraxial appoximation will not work.

Linear vs nonlinear

- Our system can be described in terms of the flow f (propagator, transfer map): $\vec{z}_{f}=f\left(\vec{z}_{i}\right)$, where \vec{z}_{i} - initial state of the system, $\vec{z}_{f}-$ final state (e.g. $\vec{z}=\left(x, x^{\prime}, y, y^{\prime}\right)$ for two dimensions).
- Most of the time we don't know the analytic expression for f, and we use numerical methods to obtain some approximation of f.
- Linear approximation: $\vec{z}_{f}=M \vec{z}_{i}$, where M is a matrix, (e.g., for one dimension $\left(x, x^{\prime}\right)_{f}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)\left(x, x^{\prime}\right)_{i}^{T}$, where all $m_{i j}$ are constants).
- Nonlinear approximation: there are different approaches to approximating f, in COSY that I used for calculations f is approximated by its Taylor polynomial of order n : $\vec{z}_{f}=T_{n}(f)\left(\vec{z}_{i}\right)$.

3.3 m drift

Drift, 6D emittance, linear vs nonlinear

- ecalc9 uses: $\varepsilon_{6 D}=\frac{c}{m^{3}} \sqrt{\operatorname{det} \Sigma}$.
- Equivalent to: $\frac{c}{m^{3}}\left|\lambda_{1}\right|\left|\lambda_{2}\right|\left|\lambda_{3}\right|$ in terms of eigen-emittances.
- Left: linear case; right: nonlinear case.
- Nonlinear case: emittance approximation based on second moment matrix Σ shows significant growth, while the phase space volume stays constant.

Drift, trans. emittance, linear vs nonlinear

- ecalc9 uses: $\varepsilon_{T}=\frac{1}{m} \sqrt{\sqrt{\operatorname{det} \Sigma_{T}}}$.
- Equivalent to: $\frac{1}{m} \sqrt{\left|\lambda_{1}\right|\left|\lambda_{2}\right|}$ in terms of eigen-emittances.
- Left: linear case; right: nonlinear case.
- Two transverse eigen-emittances are different, but their geometric average is equivalent to the transverse emittance calculated by ecalc9.
- Nonlinear case: emittance growth, both for ε_{T} and $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|$.

Drift

Drift, long. emittance, linear vs nonlinear

- ecalc9 uses: $\varepsilon_{L}=\frac{c}{m} \sqrt{\operatorname{det} \Sigma_{L}}$.
- Equivalent to: $\frac{c}{m}\left|\lambda_{3}\right|$ in terms of eigen-emittances.
- Left: linear case; right: nonlinear case.
- There is a slight difference due to the fact that ε_{L} uses only the part describing the longitudinal motion.
- Nonlinear case: emittance growth.

MICE Step IV geometry, no material

MICE Step IV magnetic field profile

MICE, 6D emittance, linear vs nonlinear

- ecalc9 uses: $\varepsilon_{6 D}=\frac{c}{m^{3}} \sqrt{\operatorname{det} \Sigma}$.
- Equivalent to: $\frac{c}{m^{3}}\left|\lambda_{1}\right|\left|\lambda_{2}\right|\left|\lambda_{3}\right|$ in terms of eigen-emittances.
- Left: linear case; right: nonlinear case.
- Nonlinear case: emittance approximation based on second moment matrix Σ shows significant growth, while the phase space volume stays constant.

MICE, trans. emittance, linear vs nonlinear

- ecalc9 uses: $\varepsilon_{T}=\frac{1}{m} \sqrt{\sqrt{\operatorname{det} \Sigma_{T}}}$.
- Equivalent to: $\frac{1}{m} \sqrt{\left|\lambda_{1}\right|\left|\lambda_{2}\right|}$ in terms of eigen-emittances.
- Left: linear case; right: nonlinear case.
- Two transverse eigen-emittances are different, but their geometric average is equivalent to the transverse emittance calculated by ecalc9.
- Nonlinear case: emittance growth, both for ε_{T} and $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|$.

MICE, long. emittance, linear vs nonlinear

- ecalc9 uses: $\varepsilon_{L}=\frac{c}{m} \sqrt{\operatorname{det} \Sigma_{L}}$.
- Equivalent to: $\frac{c}{m}\left|\lambda_{3}\right|$ in terms of eigen-emittances.
- Left: linear case; right: nonlinear case.
- There is a slight difference due to the fact that ε_{L} uses only the part describing the longitudinal motion.
- Nonlinear case: emittance growth.

Phase space volume change in the nonlinear case (MICE Step IV)

- Phase space volume change can be determined by $\operatorname{det}(\operatorname{Jac}(M))$.
- Calculation for the nonlinear case yields that the determinant is equal to 1 everywhere in the area of interest (based on the Taylor expansion of order 9).
- Picture shows the deviation of the determinant from $1\left(O\left(10^{-11}\right)\right.$.
- Phase space volume is constant.

Other ways to calculate emittance?

- Calculate phase space volume using Voronoi tesselation algorithms? - resource hungry
- Use $\operatorname{det}(\operatorname{Jac}(M))$? - how to include absorber material
- Higher moments?
- Do we need "nonlinear emittance"?

