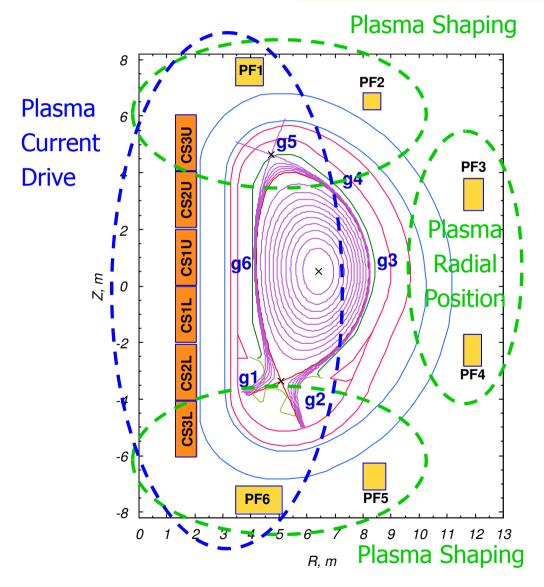
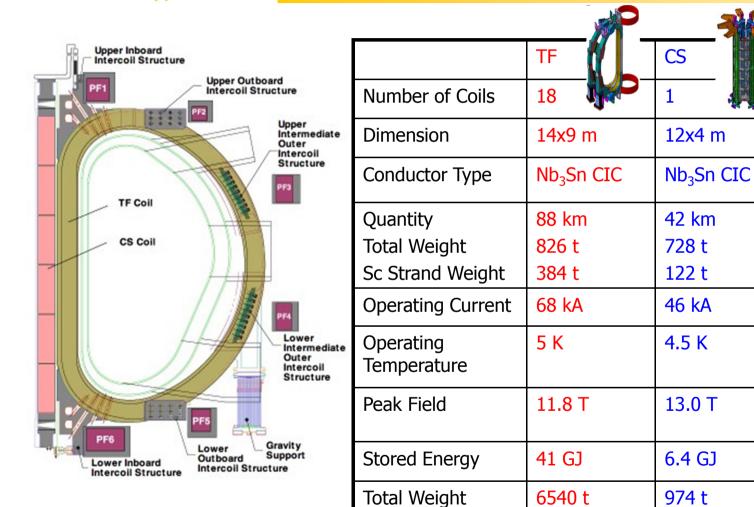
ITER conductor design and (we hope) nuclear heating

Matt Jewell ITER Organization


Background slides courtesy A. Devred

15 April 2011 MAP meeting

ITER Magnet System (1/2)


ITER Magnet System (2/2)

- TF Coils are used for charged particles' confinement in plasma.
- CS coils are used to produce inductive flux and to ramp up plasma current; they also play a role in plasma shaping and vertical stability.
- PF coils are used to control radial position equilibrium of plasma, as well as for plasma shaping and vertical stability.
- CC's are used to correct error field harmonics.

Salient Paremeters of ITER Magnets

iter china eu india japan korea russia usa

(Incl. Supports)

ITER Magnet System Parameters

4/	19	

PF

6

8 to 24 m

NbTi CIC

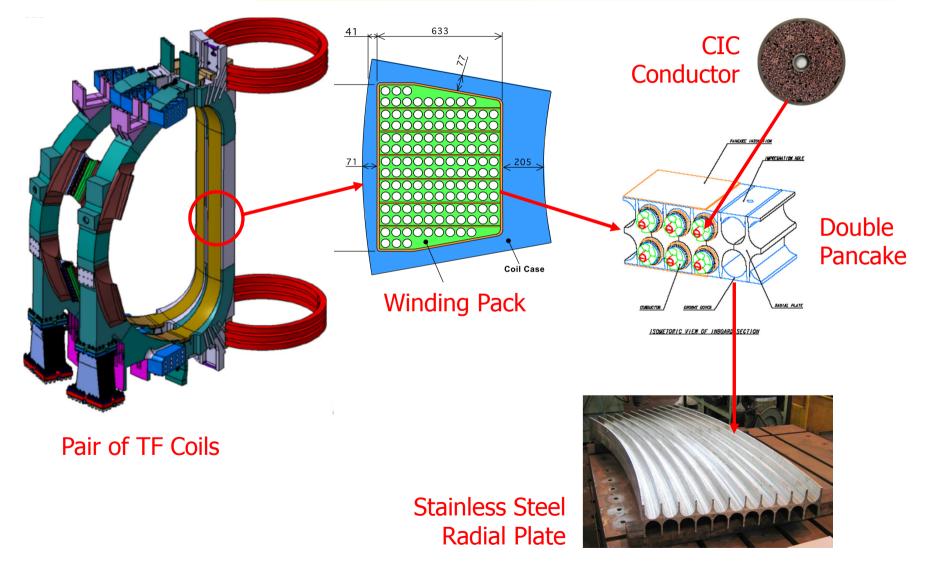
65 km

1224 t

224 t

52 kA

4.5 K


(P6)

4 G1

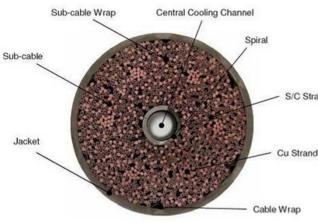
2163 t

Up to 6.0 T

Detailed Features of ITER TF Coils

Scope of ITER Conductor Supply

china eu india japan korea russia usa


Coil	Total Length (km) [Weight (t)]	SC Strand Type	SC Strand Weight (t)	Jacket Type	Jacket			Weight Credit		ITER (Credit S	Sharin	ng (%)	
					туре	Material			CN	EU	JA	ко	RF	US
TF	88 (826)	Nb₃Sn	384	round- in- round	Mod. 316LN	185	215 (323)	7.5	20	25	20	20	7.5	
CS	42 (728)	Nb₃Sn	122	round- in- square	JK2LB or mod. 316LN	530	90 (135)	I	-	100	_	Ι	-	
PF	65 (1224)	NbTi	224	round- in- square	316L	900	81 (122)	67	13	-	_	20	_	

• A typical TF Conductor Unit Length is 760 m and requires a minimum of 3.3 t of Nb₃Sn strands and of 1.6 t of stainless steel tubes.

• A typical CS Conductor Unit Length is 905 m and requires a minimum of 2.6 t of Nb₃Sn strands and 11.3 t of stainless steel tubes.

ITER Cable-In-Conduit Conductors

iter china eu india japan korea russia usa

ITER TF CICC

• ITER coils are wound from Cable-In-Conduit Conductors (CICC's), relying on superconducting multifilament composite strands mixed with pure copper strands/cores.

- The strands are assembled in a multistage, rope-type cable around a central cooling spiral.
- The cable is inserted in a stainless steel conduit where supercritical helium is forced to flow.

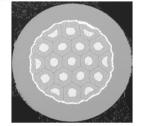
Cooling Spiral (Courtesy of VNIIKP, KO)

Rope-Type Cable (Courtesy of NFRI, KO)

Stainless Steel Conduit (Courtesy of ASIPP, CN)

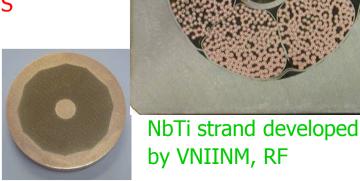
(Courtesy of ENEA/Frascati, EU)

ITER Conductor Types



- TF coils rely on Nb₃Sn strands and a modified 316LN, round-in-round jacket,
- CS coil modules rely on Nb₃Sn strands and an austenitic steel, round-in-square jacket.

PF Conductor


8/19

Bronze Nb₃Sn strand developed by BAS, EU

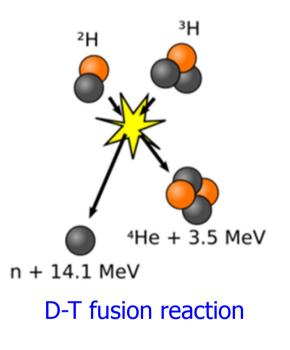
Internal-tin Nb₃Sn strand developed by OST, US

• PF coils rely on NbTi strands and a 316L, round-in-square, jacket.

TF and CS conductor design

china eu india japan korea russia usa

	TF	CS
Sc strand type	Nb ₃ Sn	Nb ₃ Sn
Cable pattern	$((2sc + 1cu) \times 3 \times 5 \times 5 + Core) \times 6$	(2sc + 1) x 3 x 4 x 4 x 6
Cable twist pitches (mm)	80/140/190/300/420	45/85/145/250/450
Core pattern	3 Cu x 4	n/a
Central spiral	8 x 10 mm	7 x 9 mm
Petal wrap	0.10 mm thick, 50% cover	0.05mm thick, 70% cover
Cable wrap	0.10 mm thick, 40% overlap	0.08 mm thick, 40% overlap
Cr coated strand diameter (mm)	0.82	0.83
Nb ₃ Sn strand Cu-to-non-Cu ratio	1.0	1.0
Number of sc strands	900	576
Non copper (mm ²), untwisted [twisted]	235.3 [242.6]	154.3 [160.8]
Total copper (mm ²), untwisted [twisted]	508.3 [524.0]	308.6 [321.5]
Void fraction (annulus)	29.7 %	33.5 %
Cable diameter (mm)	39.7	32.6
Jacket (mm)	Circular 316LN Ø 43.7	Circle in square 316LN 49 x 49

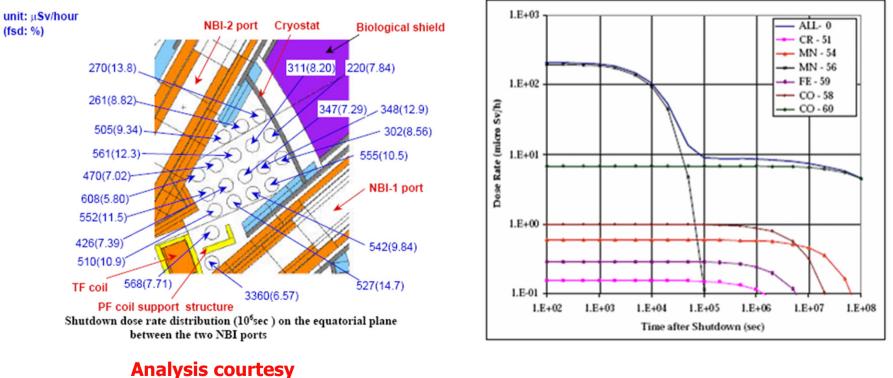

• CICC design allows for flexibility in managing heat via management of AC losses (twist pitches) and cooling pattern (void fraction, channel)

Nuclear heating

china eu india japan korea russia usa

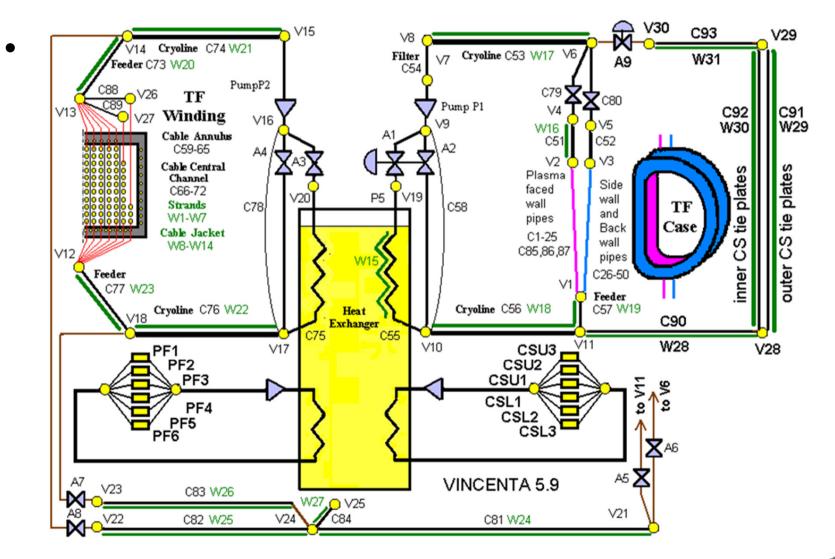
• "If ITER has a nuclear heating problem, then ITER was a fantastic success"

- Neutrons are a concern for at least the following reasons:
 - Direct human health hazard
 - Indirect health hazard (maintenance on activated components)
 - Reduction of component performance (insulation and superconductor; almost always limited by the insulation)
 - Direct nuclear heating of cryogenic magnet conductor


Dose rates during maintenance

iter china eu india japan korea russia usa

- Only gamma-rays from activation
- We have the restriction:


M. Loughlin

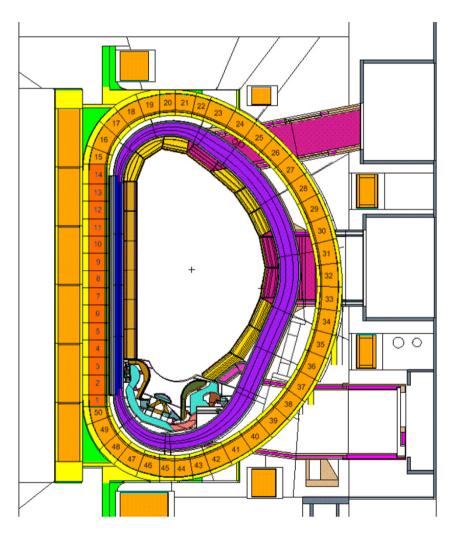
- In areas of hands-on maintenance the dose rate <100 μ Sv/hour 10⁶s (~12 days) after shutdown.

Ŷ

Magnet cooling scheme

Design criteria and cooling parameters

From the ITER System Requirements Documents:

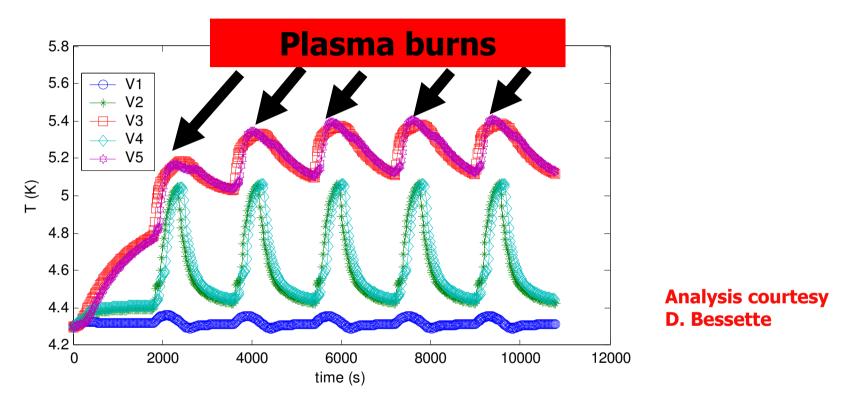

- The total TF coil heating should not exceed 14kW during a 500MW fusion power pulse
- Limit of fast neutron fluence in Winding Pack (WP) magnet superconductor is 1×10^{19} n/cm²
- Limit of fast neutron fluence in WP's insulator is 5×10^{17} n/cm²
- Limit of peak local nuclear heating in magnet steel case is 2×10^{-3} W/cm³
- Limit of peak local nuclear heating in magnet conductor is 1×10^{-3} W/cm³

	Mass flow rate (kg/s)	Helium Volume (m ³)	Pump Pressure Drop (bar)
TF winding loop	2.0	42.2	1.0
TF case loop	2.5	13.3	1.0
CS loop	2.0	15.7	1.0
PF & CC loop	1.8	27.9	0.8

Geometrical considerations

 Area of highest concern for nuclear heating is the inboard leg of the TF coil. This is a combination of:

- Highest field (lowest operating margin on the superconducting strands)
- High neutron flux (CS, PF shielded by TF)
- Tightest geometrical restrictions for shielding
- Other areas of "local" concern also exist, e.g. in the vicinity of the NBI ports



TF coil heat load inventory

Type of Heat Load	CASE	Winding Pack
Steady state		
Conductor joints		1.00 kW
Thermal radiation to case and structure	1.33 kW	
Thermal conduction from the vacuum vessel and thermal shield supports	0.05 kW	
Thermal conduction from the coil gravity supports	2.30 kW	
Feeders, sc bus bar and cold terminal box	0.20 kW	0.55 kW
Cryolines Transient	0.01 kW	0.40 kW
Nuclear heating (during 400s burn)	7.6 kW	6.2 kW
AC losses in conductors, eddy current losses in the radial plate		1.73 MJ
Eddy current losses in the 4 case walls	2.6 MJ	
Eddy current losses in other structures	2.9 MJ	

Conductor temperature evolution

iter china eu india japan korea russia usa

ITER magnet system does NOT operate in steady-state mode!

- TF conductor heating limits plasma duration (400-500 s)
- TF coils exhibit overall slow transient behavior, limiting number of consecutive pulses

How ITER designs for nuclear heating

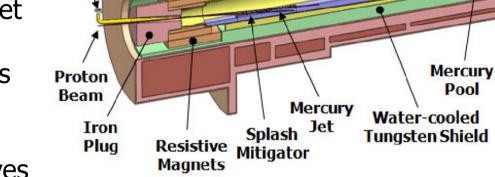
Conductor design:

• Void fraction

iter china eu india japan korea russia usa

- Temperature margin (i.e. performance and number of superconducting strands)
- Annular cable (central channel)
- Management of other heat sources (e.g. AC losses cable twist pitches)
 - Many of the basic design choices in ITER relate to heat and energy management during a plasma disruption

System design:


- Helium flow path
- Operating scenario optimization
- Geometric optimization (e.g. placement of ports)
-

Considerations for MAP

Some thoughts based on my (limited) understanding of the project:

china eu india japan korea russia usa

- Presence of the Cu magnet may drive some design considerations, e.g. losses
 - Series or parallel?
- Smaller stored energy gives greater design flexibility

SC-1

SC-2 SC-3 SC-4

- Consider higher aspect ratio conductors
- Look to other existing hybrid magnet projects using CICC

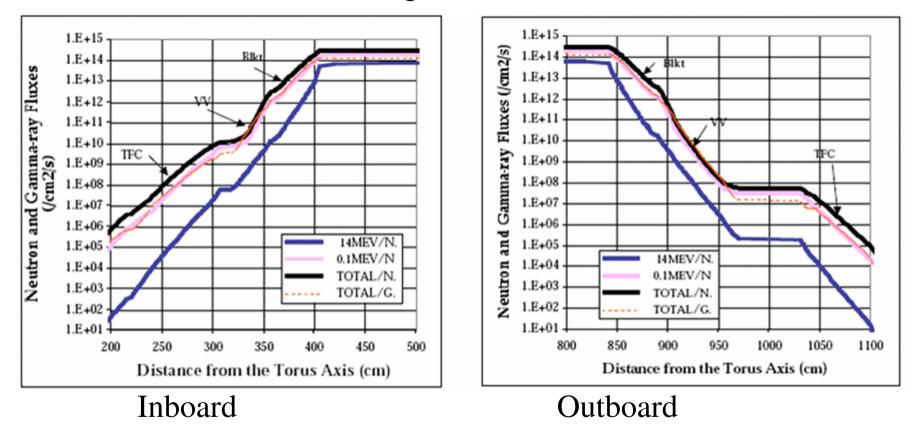
Nozzle

Tube

 What is the energy deposition map? CICC design can offer increased flexibility if (for example) highest neutron flux is occurring in area of lower IxB

Window

Mercury


Drains

THE END

Neutron and Gamma Fluxes

Fluxes through blanket, VV and shield