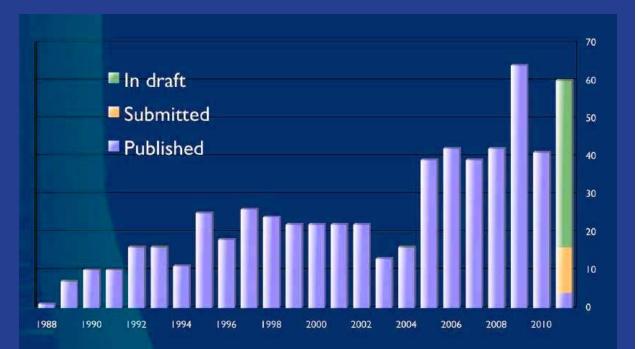

CDF Operations, Physics and Analysis Plans

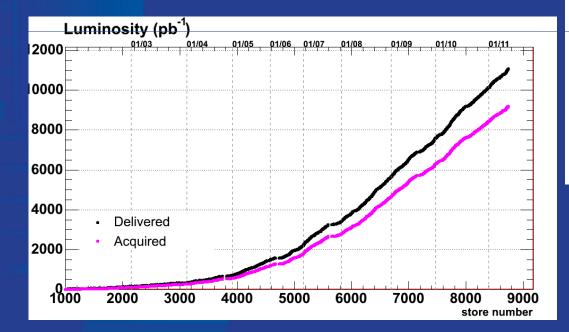
Ray Culbertson Fermilab Institutional Review June 6-9, 2011

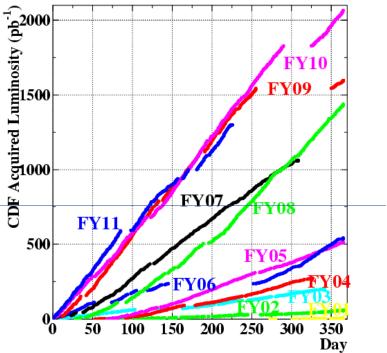

The CDF Collaboration

CDF is Going Strong!

 Ph.D. Theses
 270 in Run II, 26 in CY10
 70 more expected

 Publications
 360 in Run II, 41 in CY10
 24 submitted
 in CY11 so far


‡Fermilab


Operations

Total:

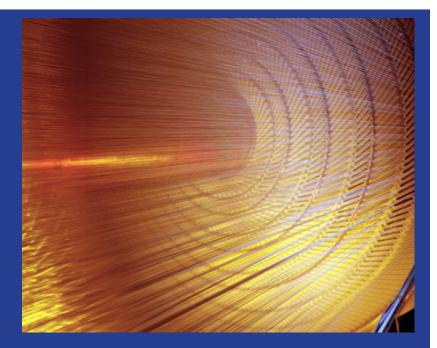
11.2 fb⁻¹ delivered 9.2 fb⁻¹ collected Anticipated final dataset:

12 fb⁻¹ delivered 10 fb⁻¹ collected Efficiency : similar to previous years

辈 Fermilab

Operations

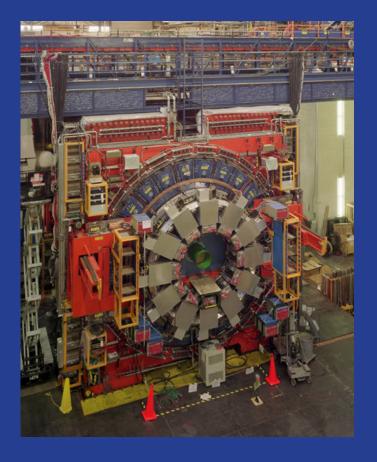
Smooth running


broken COT wire, minimal data loss

replaced db machine

Record luminosities
 running at 405E30
 no trips or other detector problems

deadtime high, but behaved as predicted


this is effective!

FNAL group participation: Phil Schlabach: ops Co-Leader Hahn, Schmidt, Lewis: Assoc Heads Mukherjee, Wagner: COT leaders Carron, Stancari: SVX leaders Lewis: DAQ leader, D&D Murat: L3 Movilla-Fernandez: L2 Operators, pager carriers, studies...

Operations – End of Life

- Oct 1, 2011 secure CDF
 - no cosmic runs
 - warm cryogenics
 - purge gas
 - drain water
 - re-purpose L3 computing
 - turn B0 over to D&D plan

- Construction of the Illinois Accelerator Research Center
 - utilities work, roads and holes
 - expect no interference with the B0 building, operations
 - good communication to minimize risk

Physics

- Results ► Exotics Electroweak ► Top ► B Physics
 - Higgs

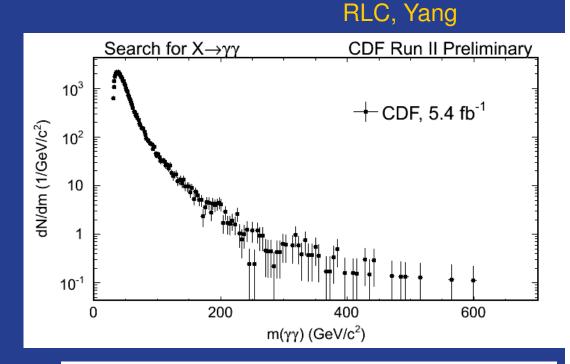
- Legacy
 - ► Searches
 - ► Higgs
 - ► Particle properties

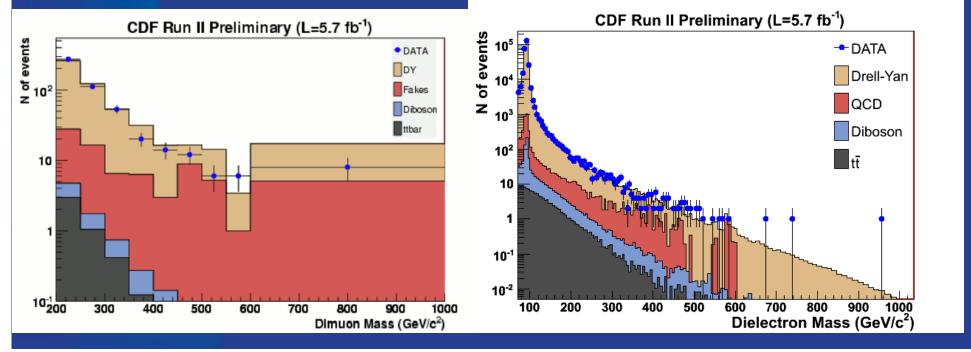
• Plans

► FY12

► FY13

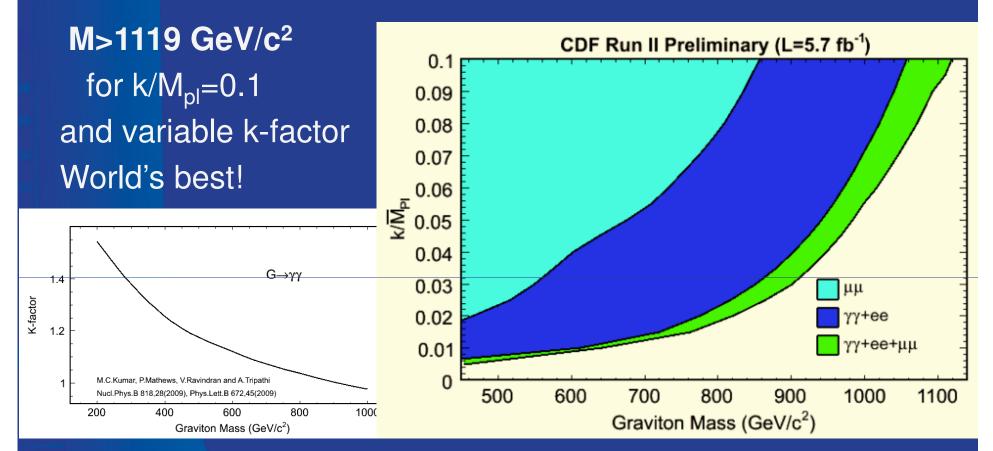
‡Fermilab


- Production
- Finish Strong!
- Needs physicists


7

Exotics

High mass Searches

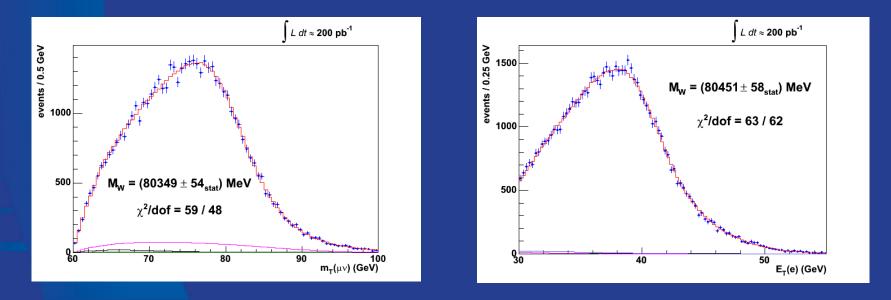

- Sensitive to narrow peaks
- γγ, e⁺e⁻ and μ⁺μ⁻
 spectra
- world's highest e⁺e⁻
 candidate so far...

RLC, Yang

Limits on R-S Gravitons

D0: 1050 GeV/c² with 5.4 pb⁻¹ and k-factor=1.54 (P.R.L. 104 241802 (2010)) CMS: 1079 with 40 pb⁻¹ dileptons and k-factor=1.6 (arxiv 1103.0981) Atlas: 920 with 40 pb⁻¹ diphotons and k-factor ? (ATLAS-CONF-2011-044)

‡ Fermilab

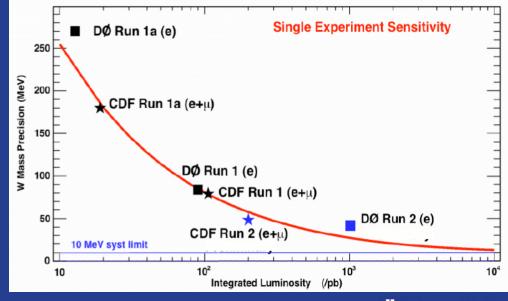

Exotics Group Plans

- Severe case of LHC-itis
- wrap up current work and publish
- follow up on LHC discoveries!?

Electroweak

W mass Efforts from 2000 to 2007...

CDF 200pb⁻¹ 80413 ±34stat ±34syst MeV = 80413±48 MeV
Combined with DØ 1.2fb⁻¹ 80420 ± 31 MeV more precise than LEP combined...

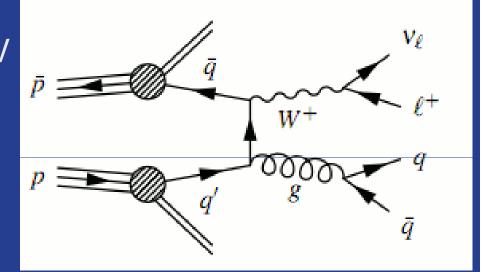


辈 Fermilab

W mass

- leading systematics are statistical (green)
- improvements in
- QED models available
- improved W asymmetry would help PDF
- significant improvement in tracker and calorimeter understanding
- goals is $\delta M = 20 \text{ MeV}$
- 2fb ⁻¹ analysis is well underway
- interest in 10fb⁻¹

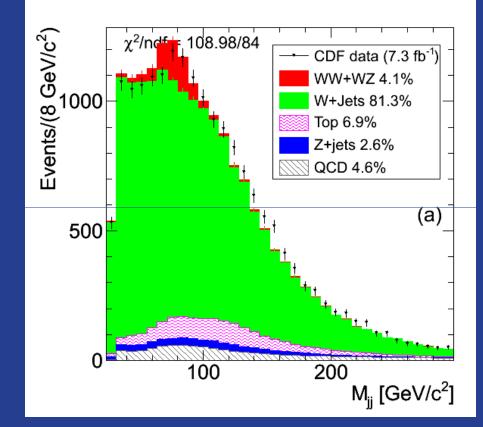
	electrons	muons	common
W statistics	48	54	0
Lepton energy scale	30	17	17
Lepton resolution	9	3	-3
Recoil energy scale	9	9	9
Recoil energy resolution	7	7	7
Selection bias	3	1	0
Lepton removal	8	5	5
Backgrounds	8	9	0
production dynamics	3	3	3
Parton dist. Functions	11	11	11
QED rad. Corrections	11	12	11
Total systematic	39	27	26
Total	62	60	


Fermilab Institutional Review, June 6-9, 2011

🛟 Fermilab

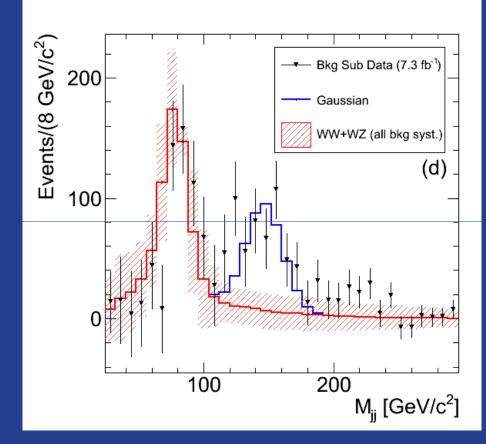
W +2jets

Selection


 7.3 fb⁻¹ just updated!
 Isolated e or µ, E_T>20 GeV
 missing E_T > 25 GeV
 M_T>30 GeV
 2 cone 0.4 jets with E_T > 20 GeV
 P_T(jj) > 40 GeV

Ristori, Cavaliere, G&V

W +2jets

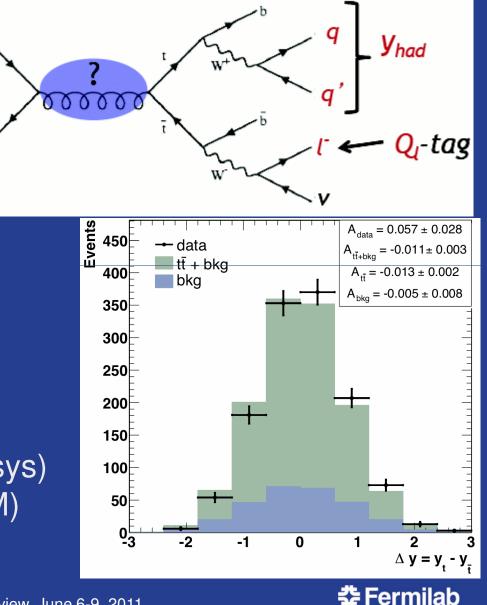

 Backgrounds ► W+jets **ALPGEN+PYTHIA** MLM matching ► Z+jets **ALPGEN+PYTHIA** top from PYTHIA \triangleright QCD from anti-electron, norm to low missing E_{T} WW/WZ from PYTHIA

Ristori, Cavaliere, G&V

W +2jets

- survives initial checks on QCD, W+jets backgrounds
- present in e and μ
- M=147±4
- width consistent with resolution
- not in Z+2j or W+bj
- 4.1 σ w/trials factor and syst
- higher with full lineshapes
- much to follow up on!

Electroweak Group Plans

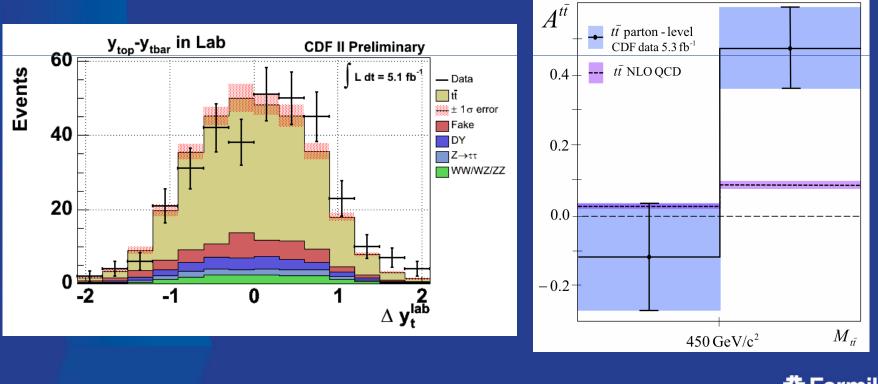

- W mass 2fb⁻¹ underway
- W mass 10 fb⁻¹ under consideration
- planning sin θ_W from Z kinematics
- full dataset WW/WZ
- final W asymmetry

investigations with W+2j excess

Тор

Top Charge Asymmetry

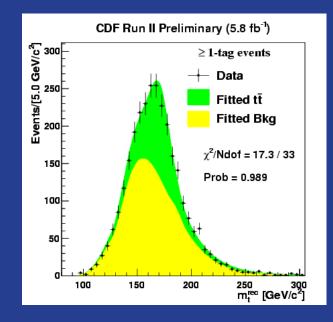
- an asymmetry could indicate a interference with new physics
- 5.3 fb⁻¹
- reconstructed tt in I+jets
 t and tbar consistent (CP)
 parton level, tt frame
 Obs: 0.158 ± 0.075 (stat+sys)
 QCD: 0.058 ± 0.009 (MCFM)

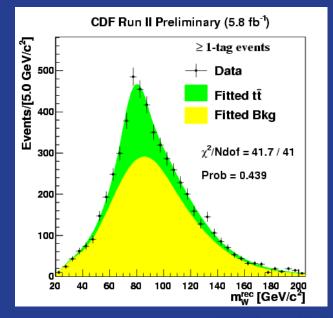

q

Top Charge Asymmetry

dileptons are consistent (parton level, tt frame)

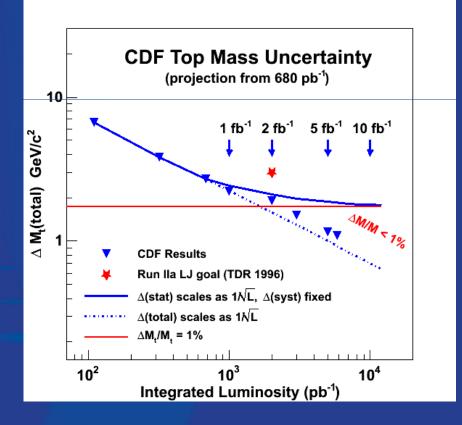
 $\begin{array}{l} A_{fb\ (corr)}=0.42\pm0.15_{stat}\pm0.05_{syst} \quad A_{fb\ (theory)}=0.06\pm0.01\\ \bullet\ strongly\ enhanced\ for\ M(tt){>}450\ GeV \end{array}$

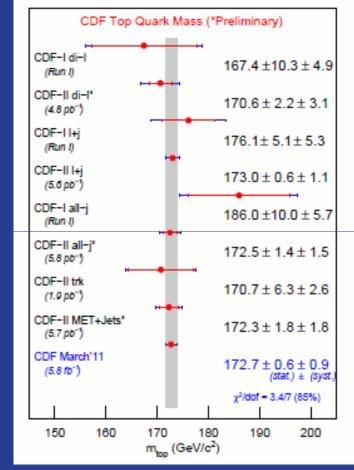

 $A_{fb (corr)} = 0.475 \pm 0.114$ $A_{fb (theory)} = 0.088 \pm 0.013$



Top Mass in All Hadronic

- 5.8fb⁻¹
- 6,7,8 jets with $E_T > 15 \text{ GeV}$
- 1,2, or 3 b-tags
- NN kinematics selection
- data-driven background
- unbinned templates
- in situ JES from W peak


 $M_{top} = 172.5 \pm 1.4 \text{ (stat)} \pm 1.0 \text{ (JES)} \pm 1.2 \text{ (syst)} \text{ GeV/c}^2 = 172.5 \pm 2.0 \text{ (total)} \text{ GeV/c}^2$



🗲 Fermilab

Top Mass • Winter 2011 CDF combination $M_{top} = 172.70 \pm 1.09$ (total) GeV/c²

Fermilab Institutional Review, June 6-9, 2011

‡ Fermilab

Top Group Plans

Completing the CDF top suite
single top (S+T channels)

this summer and final sample

final top mass measurement and combination

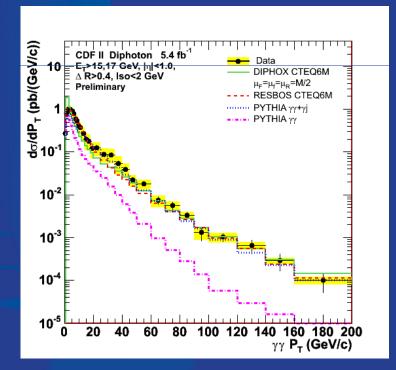
this summer and final sample?

kinematics of top events
measurements of spin correlations

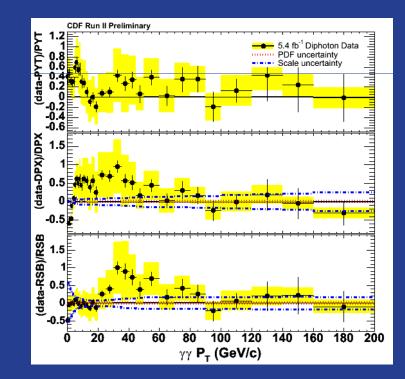
- Investigating hints
 - top asymmetry
 - top polarization as a function of asymmetry
 - investigate top charge further

🛟 Fermilab

Convery, Pronko: co-convener

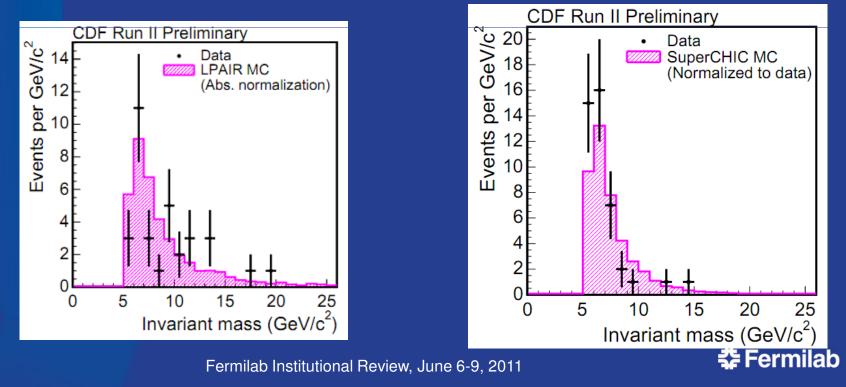

QCD

‡ Fermilab


RLC, Pronko, G&V

Diphoton Cross Section

- 5.4 fb-1
- 2 central, isolated photons
- BG subtraction via track iso


- ΡΥΤΗΙΑ γγ
- PYTHIA $\gamma\gamma$ and $\gamma j + I/FSR$
- DIPHOX N.L.O. w/brem
- RESBOS N.L.O. with resummed gluon emission

‡Fermilab

Exclusive Diphoton Production

- colorless exchange
- 1.1 fb⁻¹
- E_T > 2.5 GeV
- 32 exclusive e⁺e⁻ events (a QED control sample)
- 43 exclusive $\gamma\gamma$ events, <16% di- π^0

QCD Group Plans

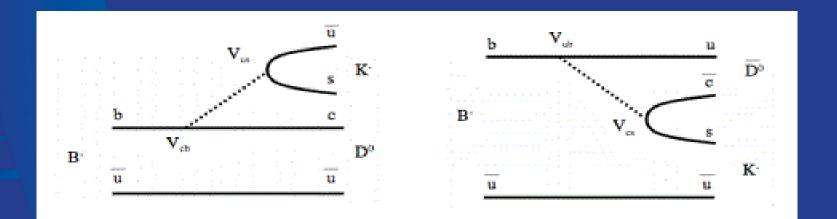
• most measurements are unique to the Tevatron, but ...

fundamentals have been addressed

many are systematics or theory limited

limited personpower

Tonelli: Co-convener


B Physics

🛟 Fermilab

Fermilab Institutional Review, June 6-9, 2011

CP Violation in $B \rightarrow Dh$

- Branching fractions and CP asymmetries of
 B[±] → D⁰ h[±], D⁰ → K⁻π⁺ or K⁺π⁻ (CF and DCS decay)
- leads to a measurement of the γ angle
- clean method no tagging or time-dependence
- first measurement at a hadron collider, "ADS" method
- uses the silicon impact parameter trigger (SVT)

Guests and Visitors

Total $B^{-} \rightarrow D_{DCS}^{0} \pi^{-}$

 $\rightarrow D_{DCS}^0 K$ B $\rightarrow D^{0^*} \pi^{-}$

> $\rightarrow K^{-}\pi^{+}\pi^{-}$ → D te⁺ v

 $B^{-} \rightarrow D^{0}\pi^{-}, D^{0} \rightarrow X$

 $B^{-} \rightarrow D^{0}K^{-}, D^{0} \rightarrow X$

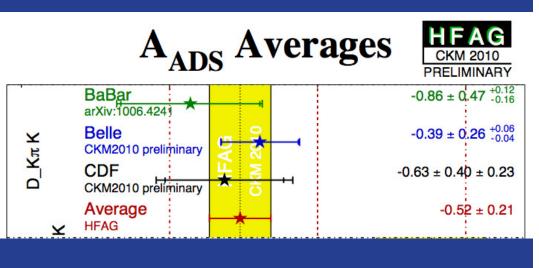
5.50

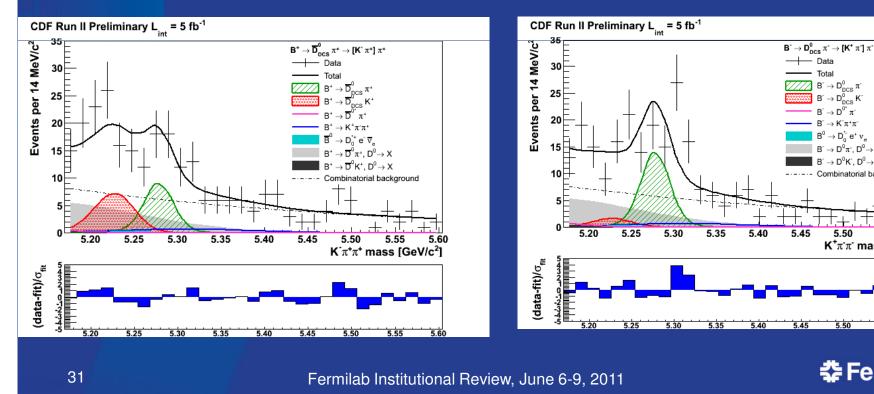
Combinatorial background

5.55

5.55

🛟 Fermilab

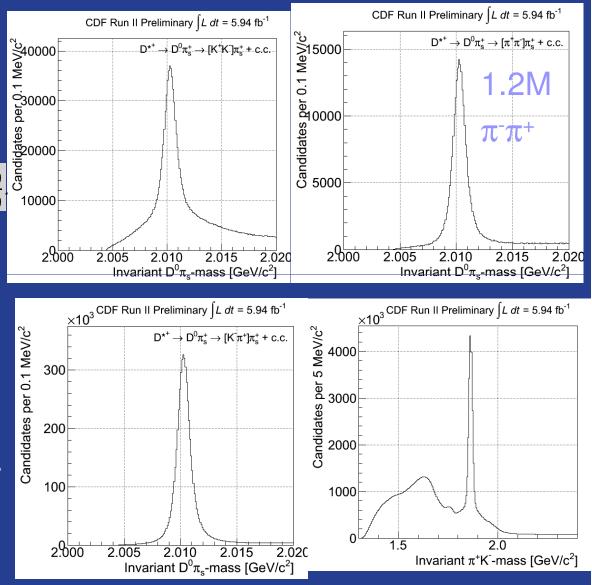

K⁺π⁻π⁻ mass [GeV/c²]


†_+

5.60

CPV in $B \rightarrow Dh$

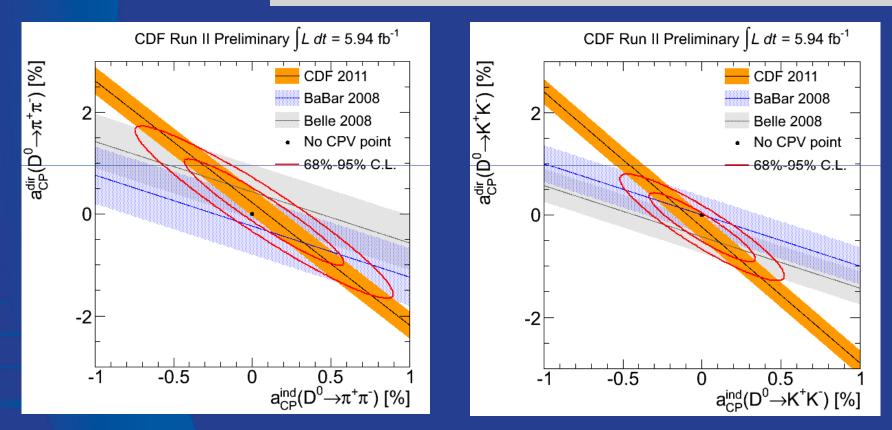
$R_{ADS}(\pi) = (4.1 \pm 0.8(stat.) \pm 0.4(syst.)) \cdot 10^{-3}$
$R_{ADS}(K) = (22.5 \pm 8.4(stat.) \pm 7.9(syst.)) \cdot 10^{-3}$
$A_{ADS}(\pi) = 0.22 \pm 0.18(stat.) \pm 0.06(syst.)$
$A_{ADS}(K) = -0.63 \pm 0.40(stat.) \pm 0.23(syst.)$


Tonelli, Morello, Di Canto, G&V

CP Violation in Charm Decays

CPV in charm would point to new physics Asymmetry

$$A_{\rm CP}(h^+h^-) = \frac{\Gamma(D^0 \to h^+h^-) - \Gamma(\overline{D}{}^0 \to h^+h^-)}{\Gamma(D^0 \to h^+h^-) + \Gamma(\overline{D}{}^0 \to h^+h^-)},$$


- Negligible penguin contribution to charm decays in SM
- D* tag for charm or anti-charm
- Use data to correct for detector asymmetry

Tonelli, Morello, Di Canto, G&V

CP Violation in Charm decays

 $A_{\rm CP}(D^0 \to \pi^+ \pi^-) = [+0.22 \pm 0.24 \text{ (stat.)} \pm 0.11 \text{ (syst.)}]\%$ $A_{\rm CP}(D^0 \to K^+ K^-) = [-0.24 \pm 0.22 \text{ (stat.)} \pm 0.10 \text{ (syst.)}]\%.$

Expect to be world's best for several years!

Fermilab Institutional Review, June 6-9, 2011

🛟 Fermilab

B Physics Group Plans

Finishing shortly

- $B_{d/s} \rightarrow \mu \mu$
- sin 2(βs)
- $B_{d,s} \rightarrow hh$
- B \rightarrow K(*)µµ
- D mixing

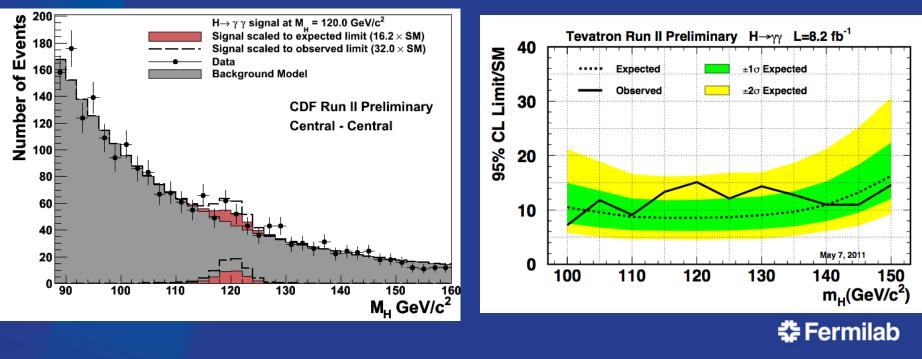
Mid term

- $B_s \Delta \Gamma$ from $B_s \rightarrow \bullet D_s D_s$,
- measurement of Y polarization
- A_{SL} measurement in response to DØ

Unique in the long term

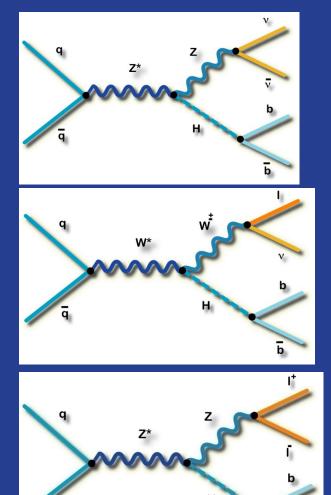
- production cross-sections, polarizations, etc...
- precise CPV where p-pbar collisions are crucial to ensure no CP-asymmetry is present at production

James, Kilminster: co-conveners

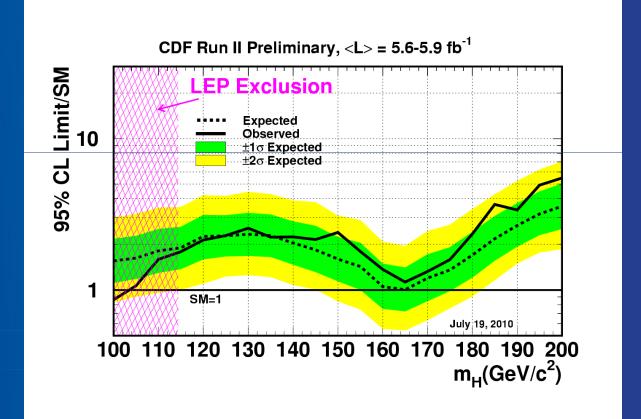

Higgs

Group, RLC

SM $H \rightarrow \gamma \gamma$


- two photons+
- several firsts in techniques!
- CDF limits ~13xSM,
 - combined with DØ's: ~8 xSM
- derived fermiophobic limit
 H> 114 GeV world's best!

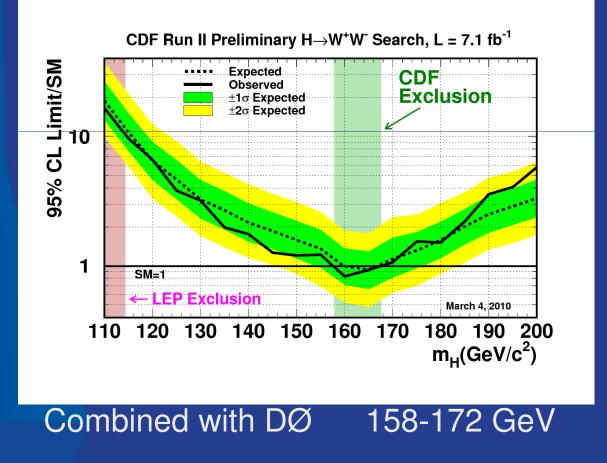
SM Higgs - Low-mass


Kilminster, Freeman, Group, Rusu, Pronko, Junk

Channel	Luminosity (fb ⁻¹)	Sensitivity (xSM @115 GeV)
WH \rightarrow lvbb (2j, neural networks)	5.7	3.48
WH \rightarrow lvbb (3j, matrix element)	5.6	3.5
$VH \rightarrow MET bb$	5.7	4
$ZH \rightarrow llbb$	5.7	5.48
$H \rightarrow \tau \tau$	2.3	24.5
VH → jjbb	4.0	17.8
$H \rightarrow \gamma \gamma$	5.4	20.8
$H \rightarrow WW \rightarrow l\nu l\nu$	5.9	10.5

SM Higgs - Low-mass

SM Higgs limit, CDF-only, low and high mass analysis, 5.9 fb⁻¹

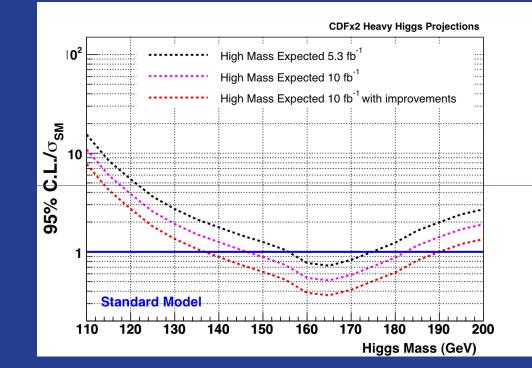

🛟 Fermilab

SM Higgs - High-mass

Main Signal	Main Background	Most Important kinematic variables	James,
gg→H	WW	$LR_{HWW}, \Delta R_{II}, H_{T}$	Jindariani,
gg→H	DY	$\Delta R_{ll}, m_T(ll, E_T), \not E_T$	Junk
Mixture	t-tbar	$H_{T}, \Delta R_{II}, M_{II}$	
gg→H	W+γ	$p_{T}(12), p_{T}(11), E(11)$	
WH→WWW	W+Jets	$\not E_{\rm T}, \sum E_{\rm T}^{\rm jets}, M_{\rm ll}$	
WH→WWW	WZ	$\not\!$	
ZH→ZWW	WZ	Jet E_T , ΔR_{lj} , $\not\!$	
ZH→ZWW	Z+Jets	$M_{jj}, M_T^H, \Delta R_{WW}$	
gg→H	W+Jets	$\Delta R_{l\tau}, \tau$ id variables	
gg→H	W+Jets	$\Delta R_{l\tau}, \tau$ id variables	
	$gg \rightarrow H$ $gg \rightarrow H$ $gg \rightarrow H$ $WH \rightarrow WWW$ $ZH \rightarrow ZWW$ $gg \rightarrow H$	$gg \rightarrow H$ WW $gg \rightarrow H$ DY $Mixture$ t -tbar $gg \rightarrow H$ $W + \gamma$ $gg \rightarrow H$ $W + \gamma$ $WH \rightarrow WWW$ $W + Jets$ $WH \rightarrow WWW$ WZ $ZH \rightarrow ZWW$ WZ $ZH \rightarrow ZWW$ $Z + Jets$ $gg \rightarrow H$ $W + Jets$	$gg \rightarrow H$ WW $LR_{HWW}, \Delta R_{II}, H_T$ $gg \rightarrow H$ DY $\Delta R_{II}, m_T(II, E_T), \not E_T$ Mixturet-tbar $H_T, \Delta R_{II}, M_{II}$ $gg \rightarrow H$ $W + \gamma$ $p_T(12), p_T(11), E(11)$ $WH \rightarrow WWW$ $W + Jets$ $\not E_T, \sum E_T^{jets}, M_{II}$ $WH \rightarrow WWW$ WZ $\not Iet E_T, \Delta R_{Ij}, \not E_T$ $ZH \rightarrow ZWW$ $Z + Jets$ $M_{jj}, M_T^H, \Delta R_{WW}$ $gg \rightarrow H$ $W + Jets$ $\Delta R_{Ir}, \tau$ id variables

🛟 Fermilab

SM Higgs - High-mass SM Higgs exclusion, CDF only, high-mass analysis only, 7.1fb⁻¹ 158-168 GeV

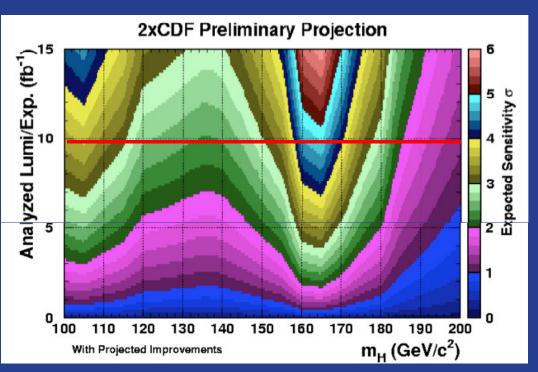


‡ Fermilab

Fermilab Institutional Review, June 6-9, 2011

SM Higgs - High-mass plans

- New combination for summer 2011
- lepton isolation overlaps
 - improved plug ID
 - new categories
- expect to achieve almost all projected improvements
- LHC expected to become competitive summer 2011

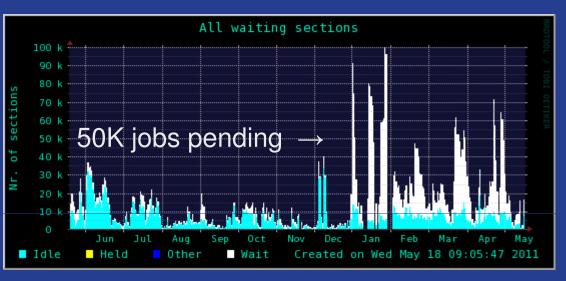

SM Higgs - Low-mass, Plans

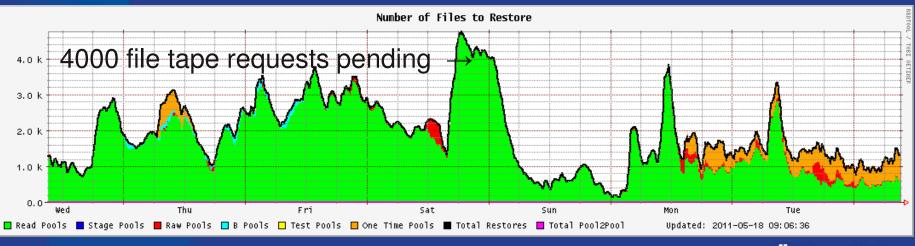
 New combination for summer 2011 - not all improvements will be available or included in all channels

- In progress
 - lepton ID: advanced selection, using all that were triggered
- mass resolution: incorporating particle flow ideas, optimized energy corrections, event techniques
 - ► B-tagging: Freeman, Junk, Kirby
 - o 10% improvement in 40% of data from reprocessing done!
 - o 10+% additional from combined, re-optimized algorithms
- Final combination for winter 2012, or summer 2012 if necessary
- LHC competitive with $H \rightarrow \gamma \gamma$ with few fb⁻¹, WH with 30 fb⁻¹

SM Higgs Final Word

- Expect to collect 10 fb⁻¹
 by October
- Significant improvements for this summer
- More improvements for the final result in 2012
- We expect to be able to meet our most recent sensitivity projections


with 90% of expected improvements2xCDF


All the Rest

Computing Resources

- demand similar to previous years
- CPU at capacity
- tape drive capacity a notable annoyance
- major dCache upgrade
- deprecating diskpool

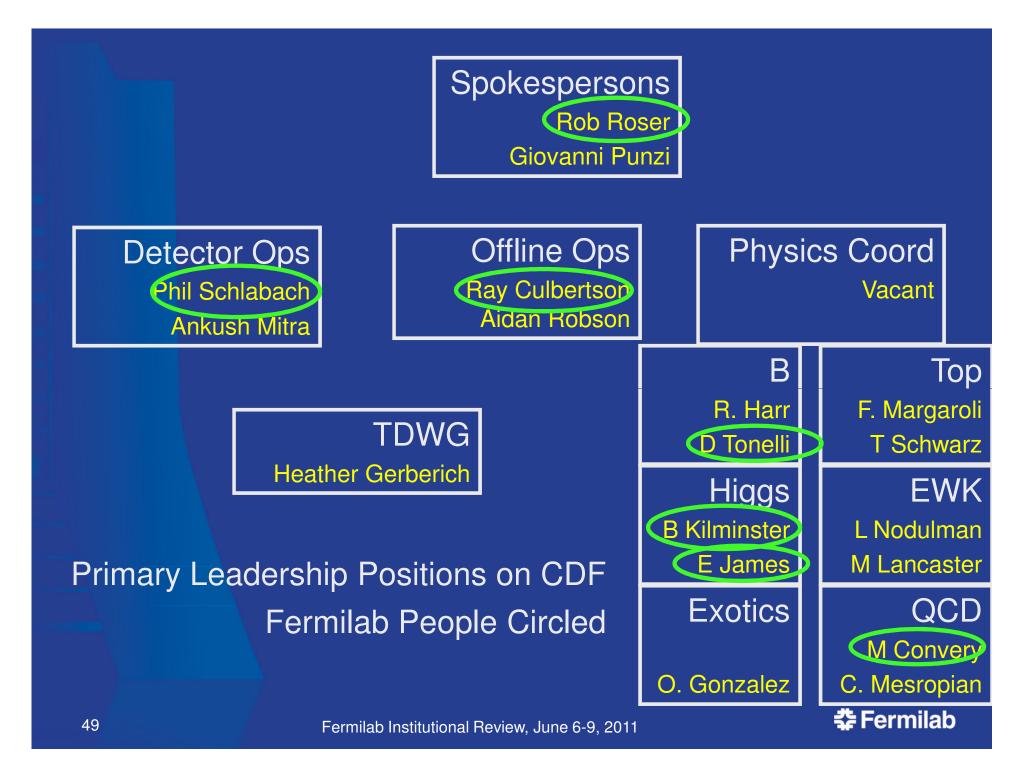
FNAL group participation: RLC, G&V : Co-Leader G&V: Operators, experts...

Fermilab

Computing Plans

- At capacity last year
- Expectation to continue at capacity in FY12
 - surge for final Higgs results
 - final data milestone legacy activity
 - scheduled special projects
 - small probability of a large reprocessing
- Anticipate a notable decrease in demand for FY13
- CD/CDF M&S Budgets:

current levels enable primary physics goals, but limit the pace and restrict options


Data Preservation

- Continue full physics capability for 5y
 - ► requires:
 - farm and interactive CPU
 - access to all data
 - production and ntupling capability
 - full MC simulation, with standard generators
 - ▶ 1y full capacity (FY12), 1 reduced, 3 as negotiated
 - requires planning and funding (for ex. tape migration)
- Continuing past 5y
 - concepts under discussion
 - how will LHC discoveries overlap Tevatron data?
 - will require funding and attracting experts

Guests and Visitors

- Supports operations
 operations co-leaders
 operators and ops managers
- Supports computing
 - ► offline co-leaders
 - ► group leaders, operators
- Supports physics
 physics leaders support

FY12 request realizes savings from the end of operations, and asks continued offline and physics support
shortfalls in FY12, 13 will put physics goals in greater risk
with downsizing workforce and ambitious goals, we strive to maximize the effectiveness of each analyzer - traveling to and working at the lab is a huge help !

Fermilab Group Research Associates

Na	me_	Start Date	Present Position				
1.	J.Goldstein	1998	Rutherford Appleton Laboratory, Scientific Staff				
2.	M.Bishai	1998	Brookhaven National Laboratory, Scientific Staff				
3.	T.Nelson	1998	SLAC, Scientific Staff				
4.	P.Gris	1999	Clermont-Ferrand, Faculty	22	of the 2		ın II
5.	J.Dittman	1999	Baylor University, Faculty			4 NU	
6.	A.Meyer	1999	University of Aachen, Faculty	RA's	s have	tenu	ire –
7.	R.Erbacher	1999	University of California, Davis, Faculty				
8.	P.Merkel	2000	Purdue University, Associate Scientist	trac	k facult	∶y le∖	vel 💦
9.	AP.Colijn	2000	University of Amsterdam, Faculty	noc	itions!		
10.	M.Martinez	2001	University of Barcelona, Faculty	pus			
11.	CJ.Lin	2001	Lawrence Berkeley National Laboratory,	PDG Scie	ntist		
12.	N.Kuznetsova	2001	Hamilton College, Faculty (Astrophysics)				
13.	J.Thom	2002	Cornell University, Faculty		Curr	ent R	۸'م
14.	B.Reisert	2003	University of Munich, Faculty		Curr		
15.	K.Anikeev	2004	IBM Analyst	<u>Na</u>	a <u>me</u>	<u>Start</u>	Date
16.	R.Eusebi	2005	Texas A&M University, Faculty	1.	M.Datta		2005
17.	E.Yu	2005	University of Taiwan , faculty	2.	A.Golossa	inov	2005
18.	K.Sato	2006	University of Tsukuba, faculty	3.	P. Movilla		2006
19.	S.Burke	2007	APS Congressional Fellow				
20.	A.Pranko	2005	UC Berkeley, Chamberlain Fellow	4.	S. Jindaria		2007
21.	C.Group	2007	University of Virginia, Faculty	5.	J. Freema		2007
22.	K Palencia	2007	CERN Fellow	6.	K. Knopfel		2010
23.	D. Tonelli	2007	Northwestern University				
24.	S. Carrone	2009	SLAC Staff				
^{25.} 50	M. Morello	2010	INFN			‡ F	ermilab
		Fei	rmilab Institutional Review, June 6-9, 2011				

Conclusions

 CDF had another banner year maintained physics despite loss of personpower! • For FY12, expect to need analysis resources at level of FY11 plan full Higgs combinations this summer and final combination for winter 2012, possibly summer 2012 We expect significant improvements at each step! other analysis will surge, triggered by the availability of the full dataset, then decrease over the year • for FY13, expect a notable decrease in analysis activity Our greatest challenge in completing the CDF legacy is in maintaining the high level of analysis effort – people! • Finish strong now - Strike while the iron is hot!

Fermilab Group Scientific Effort

<u>Sen</u>	ior	<u>Sci</u>	ent	ist	S

Associate Scientists

- M. Albrow*
- R. Culbertson D. Glenzinski* E. James*

S. Lammel

J. Lewis

M. Lindgren*

T. Liu*

P. Lukens*

K. Maeshima*

R. Moore*

A. Mukherjee*

P. Murat

R. Roser

P. Schlabach

R. Snider

R. Tesarek*

G. Velev*

R. Wagner*

W. Wester*

S. Wolbers*

F. Canelli* (WF)(JA) B. Kilminster* V. Rusu (WF) C. Group *(JA) Application Physicists S. Hahn M. J. Kim* E. J.J. Schmidt J.-C. Yun* Tom Junk Michelle Stancari Engineering Physicists Halley Brown

Guest Scientists G. Bellettini M. Corbo (IF) M. Casara V. Cavaliere (IF) N. Kuzhetskiy J Vizan (IF) P. Catastini M. Mondragon (IF) A. Di Canto (IF) G. Punzi L. Ristori C. Vellidas (IF) B. Di Ruzza (F) P. Giromini M. Trovato (IF) P. Squillacioti

*Also contributes significant effort (>20%) to another thrust

WF – Wilson Fellow

IF – International Fellow

JA – Joint Appointment with the University of Chicago

🛟 Fermilab