NOvA Project

John Cooper Fermilab Institutional Review June 6-9, 2011

NOvA CD-4 Deliverables

- Upgrade the Fermilab accelerator complex proton source from pre-NOvA 320 kW to a source capable of 700 kW
 - Paul Derwent is covering this in the parallel Accelerator breakout
- Build a new Far Detector Hall
 - At Ash River, Minnesota near the US-Canada border
 - The building is sized to hold an 18 kiloton detector
 - We have beneficial occupancy of the building (as of 13Apr2011)
- Build a 14 kiloton Far Detector at Ash River
 - This is a "Threshold Key Performance Parameter (KPP)".
 - 18 kt is now authorized as an "Objective KPP" (as of 10Dec2010).
- Build a 222 ton Near Detector
 - Which will be underground at Fermilab in the MINOS tunnel
- R&D goal: Integration Prototype Near Detector
 - Now taking data on the surface near the MINOS Service building

🛟 Fermilab

2

Progress on the Ash River building

- Bare ground in June 2009; Hole in the ground + Service Building in July 2010
- Now complete, beneficial occupancy April 13, 2011.
 - Granite berm and Barite overburden in place
 - Retention pond, landscaping, fencing, interior outfitting, well water still in progress
 - Total cost ~ 34 M\$ (claims settled), compare to estimate of 45 M\$
 - + 10M\$ contingency at CD-2 in 2007 (ARRA funds came at the right moment)

More Progress on Ash River Building

June 2010:
 Rock bolts
 & concrete work
 in progress

- NOW -- Outfitting in progress
 - Movable access platforms at ceiling
 - South wall being leveled (needs to be flat)
 - · Pivoter rails on floor
 - Movable platforms in Assembly area, ventilation for adhesive nearly done
 - 4 levels of catwalks with lights, detector power, cable trays
 - J. Cooper, Fermilab Institutional Review, June 6-9, 2011

🛟 Fermilab

4

Reminder: NOvA Basic Detector Element

To 1 APD pixel

- Liquid scintillator in a highly reflective PVC plastic cell
 - Passage of charged particles through scintillator create light
 - Light bounces off reflective PVC walls until captured in a thin wavelength-shifting fiber
 - . Typically light hits fiber within
 - ~ 50 cm of particle path,
 - ~ 8 reflections
 - The fiber is U-shaped and both ends terminate in one pixel of a 32-pixel avalanche photodiode (APD)

• Simple construction, just repeat 357,120 times

- Cells are 15 m long (so they just fit in a 53 ft semi-trailer truck)
- For vertical cells, pressure from liquid scintillator is 19 psi at bottom

J. Cooper, Fermilab Institutional Review, June 6-9, 2011

typical

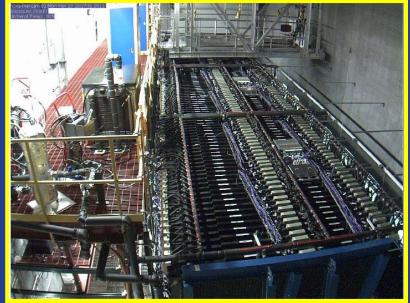
charged

particle

path

Detector Progress: prototype Near Detector

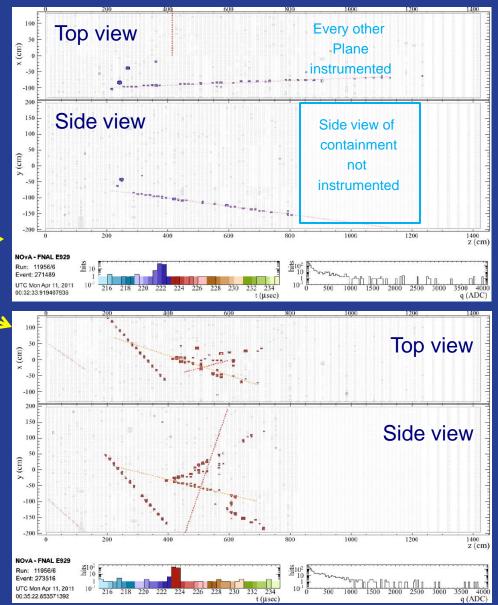
- New Near Detector Building at Fermilab
 - . 64 planes in place in July 2009, all 199 in place today
 - 30,000 gallons of scintillator in place, all PVC modules filled.
 - Front-end and Data Acquisition Electronics in place
 - . Water cooling in place but not yet routinely on
 - Shortage of APDs (see next slide)
 - \sim 83% of fiducial volume is live, 20% of shwr containment, 93% of μ catcher



Detector Progress: prototype Near Detector

- We learned a tremendous amount while assembling this prototype – this will make Ash River assembly smoother.
 - Tested access issues (rolling platform prototype), tested fill machines
 - Found mechanical interferences modified Ash River plans
 - Found problems with PVC module manifolds
 - cracks reported here last year, but all now repaired in place
 - Water system redesigned after installation & tests with original
 - Learned APDs must be installed with care
 - Cleanliness counts !
 - Now working to add protective coating from Hamamatsu
 - Added 3 mil shim to keep fibers away from APD surface
 - Noise from thermoelectric cooler circuit, now fixed with a cap board
 - Data Acquisition software was a huge effort -- Now performs with headroom, stress tests continue
 - J. Cooper, Fermilab Institutional Review, June 6-9, 2011

Detector Progress: prototype Near Detector


And we see neutrino events !

In NuMI neutrino mode

- 110 mrad off-axis
- First event seen on April 10, 2011
- Now have about 150 in-time events
 - ν_μ CC
 - . NC with multiple vertices

- First event seen on Dec 15, 2010
- Now have about 900 in-time events
- Booster anti-neutrino mode
 - 375 mrad off-axis
 - Events seen in March 2011
 - Now have > 200 in-time events
 - 8 J. Cooper, Fermilab Institutional Review, June 6-9, 2011

🛟 Fermilab

Detector progress: Commodities

- Scintillator (~ 3.2 million gallons)
 - Mineral Oil contract with Renkert Oil (Riverdale, Illinois) (fixed price)
 - . 120 railcars of Mineral Oil. First 3 railcars delivered (75,000 gallons)
 - . Fixed price if crude oil is in the range 60 110 bbl.
 - . Outside this range we pay an indexed price.
 - e.g. at \$111/bbl would pay 22% more, have 30% contingency set aside
 - Pseudocumene, 155,000 gallons, 5% of mixture
 - . 22 ISO tanks (international shipping method)
 - . Also Renkert Oil, but here they are a broker with a Chinese firm.
 - Indexed price relative to Asian naptha (which follows crude oil)
 - Wave-shifting chemicals in hand (had these last year)
 - Toll blending P.O. just placed with Renkert Oil (but at Wolf Lake, Indiana)
 - . \$0.67 / gallon to blend + 600 K\$ of infrastructure. This is a fixed price
 - . 30,000 gallons blended as test (used in prototype Near Detector last fall)
- Wavelength Shifting Fiber (~12,000 kilometers)
 - Fiber from Kuraray in Japan, still delivering after earthquake.
 - 5,400 kilometers already delivered (44% complete vs. 12% last June)

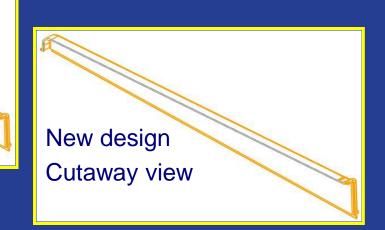
🛟 Fermilab

J. Cooper, Fermilab Institutional Review, June 6-9, 2011

9

Detector progress: Commodities

- PVC Extrusions
 - ~ 23,000 required, 13.8 million pounds
 - PVC resin from PolyOne in Pasadena, Texas, fixed price \$ 1.00 / lb
 - Extruding by Extrutech in Manitowoc, Wisconsin, fixed price \$ 0.96 / lb
 - Have final die tuned, production started in January 2010
 - Have 1184 extrusions in hand which meet our specifications
 - Specs on 6-inch long parts cut between each 51 ft extrusion: part size checked optically, part tensile strength test, part performance under 200 psi hydraulic test, reflectivity checked
 - Part performance under 1 atmosphere pressure checked on every 51 ft extrusion
 - But we are still fighting some knitting problems and reflectivity problems which keep us from full rate production
 - Running at about 50% of full rate now, rest of the time is still R&D
 - . Melt temperature low, need 370–390 deg , some is outside this range
 - . Next step: change to more aggressive screws in extruder
 - . Next step: slight modification to die for 16 of the 70 knit points
 - Next step: get TiO2 vendor to remove rutile form in all shipments
- 10 J. Cooper, Fermilab Institutional Review, June 6-9, 2011



Detector Progress: PVC Module Production

- Module factory is at the University of Minnesota
- Major effort over the last year to understand the cracked manifold issue, then to redesign the part to avoid cracks
 - Simpler part, removed all stress points
 - Learned how to check new parts for hidden cracks using acoustic micro imaging (Sonolab Midwest), so can check a samples for quality

Fermilab

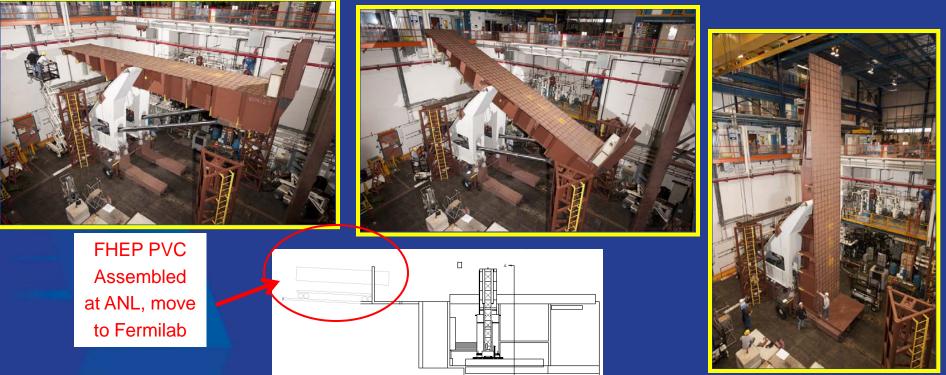
- New manifolds are due in July
- Other parts to match final extrusion size specifications come in later, so production to start in November 2011

Detector Progress: Electronics

- Front End Board (FEB-4)
 - 400 assembled for Near Detector
- Components for FEBs at Ash River:
 - Avalanche Photo diodes (APDs)
 - Received 500 from Hamamatsu production for Near Detector
 - Hamamatsu yield was good enough for them to quote a cost of \$350 each
 - About 20% were lost on installation
 - . Oil incident, fibers hitting APD surface, general dust and whiskers
 - . Unable to clean any & restore functionality for longer than a few days

Fermilab

- Pursuing thin (20 micron) protective coating, cost still unknown but expected to be small compared to the \$350 per part.
- In most recent installation with more care, only 5% lost
- Have ordered the low noise ASIC amplifiers
- Have in hand all the ADCs
- Starting to procure other parts (1 regulator unavailable \rightarrow version 4.1)


Detector Progress: Data Acquisition

- General Overview of progress during the last year:
 - System installed for Near Detector works
 - Software / Firmware took a long time to shakedown (Oct-Feb)
 - Have now sustained the rate expected at Ash River all the way through the data logger
 - Stress tests of system in progress during "no target" time
- Data Concentrator Modules (DCMs) (Each read out 64 FEBs)
 - 11 installed on Near Detector
 - Ash River version will have a faster version of PPC processor (25%), increased processor RAM to 2 GB, and a Larger FPGA
- Time Distribution Units (TDUs)
 - . 3 are installed on Near Detector, no major changes for Ash River.
- Data Acquisition / Networking / Computers: All commercial items
- Power Distribution, Cables
 - Buying parts for Ash River now, testing at Univ of Virginia

Detector Progress: <u>Assembly</u>

- Another prototype still remains, the Full Height Engineering Prototype (FHEP) at Fermilab, CDF deep pit
 - The prototype Pivoter machine is complete and tested, Nov 11, 2010.
 - . Have also tested repeatability of placing a fake block (unistrut outline with sensors)
 - Tests with full height PVC modules still to come in July
 - . Will fill this block with water after positioning studies are complete

🛟 Fermilab

14 J. Cooper, Fermilab Institutional Review, June 6-9, 2011

Detector Progress: Assembly

- Added personnel to Ash River detector outfitting so the assembly people can concentrate on a smaller scope of work
 - 5 Outfitting workshops held during the last 6 months.
 - Refined realistic schedule based on Near Detector now in hand.
 - Cable trays, water cooling, electronics installation, scintillator filling,...
 - Ash River Pivoter designed and under construction
 - . Simpler construction, now bolt together 30 separate table sections
 - Lower weldments, counterweights, pivot uprights, hydraulics in hand
 - . 250 drawing bid package for assembly table out, bids due next week
 - Ash River assembly simplified
 - One kind of PVC module, all made of thick (4.5 mm) PVC vs. original plan with thin (3.0 mm thick) horizontal PVC modules
 - Increased safety factor in structure, 1.3 \rightarrow 3.1, can fill immediately
 - All blocks will have 32 planes: H,V,H,V,....,H,V → 1st H will cause slight lean to south but < 0.5 inch after 20 years
 - Structure to be built with all blocks initially leaning south with nominal tilt of 1.0 inch \pm 0.5 inch, avoids large gaps between blocks

Fermilab

Safety factor when leaning is 2.5 for filled blocks after 20 years

15 J. Cooper, Fermilab Institutional Review, June 6-9, 2011

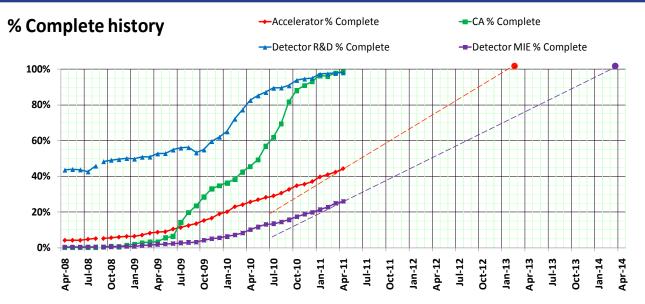
Project Progress: Financial Status

- Our Total Project Cost is 278 M\$
- As of May 2011 have obligated 168 M\$, costed 110 M\$
 - The project is 70% obligated and 46% complete

vs 29% complete last July

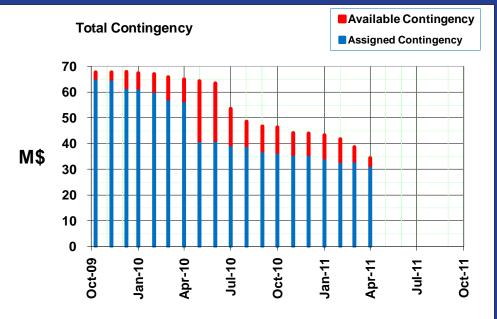
- The Estimate at Completion = 244 M\$, remaining 34 M\$ is contingency
- Basic data in Funding, Obligations, BCWS, BCWP & ACWP,
 - BCWS = Budgeted cost of work Scheduled
 - BCWP = Budgeted cost of work Performed
 - . ACWP = Actual cost of work Performed

K\$


Project Schedule

- We are in the middle of a multi-month effort to rework the Far Detector assembly schedule in every WBS into a more realistic estimate
 - Currently show a 130 day schedule slip relative to a year ago when we had 275 days of float between the last deliverable milestone of "Neutrino events seen in last superblock at Ash River" and CD-4.
 - 6 month slip primarily due to PVC module delays from additional R&D and redesign due to the manifold cracks, but also due to Pivoter design and construction delays
 - Attempting to recover some of the lost float during this re-planning.
- Expect:
 - . Start detector construction at Ash River in January 2011
 - Accelerator shutdown for NOvA, March 2012 Feb 2013
 Should have 1 block (0.5 kt) of the Far Detector operating just before the 2012 shutdown begins
 - At end of Accelerator shutdown, NOvA is operating about 60% of the Far Detector & the Accelerator is commissioning 700 kW beam.
 - CD-4 is November 2014

% Complete on the four basic parts of the Project


- Ash River building and Detector R&D are complete.
- Accelerator part of NOvA (discussed in the parallel session) is at 45%, finishes at the end of the 2012 accelerator shutdown
 - Need higher rate of work to get there happens naturally in the shutdown.
 - . 22 M\$ to go
- Detector part of NOvA at 26%, finishes in early 2014
 - . 107 M\$ to go

J. Cooper, Fermilab Institutional Review, June 6-9, 2011

Project Progress: Contingency Status

- <u>Assigned</u> contingency is assigned task by task according to risk
- Remaining contingency is "Available"
 - Increases unless tasks require more \$ than in base budget + assigned cont.
 - e.g., when we get the final price for APDs
 - Decreases as we add forgotten tasks
 - e.g. add QA, change a design,...
- Currently stand at 34.4 M\$ of contingency
- We have 26% Contingency on the remaining work.

Contingency Use

- First we use Available contingency to reduce project risk, to hold the project schedule, or to advance the project schedule
 - We have done this many times during the last year. (thicker PVC example)
- But we still dream of using some of it for other things
 - Now authorized to build > 14 kilotons, up to 18 kt (~9 M\$/ kt incl. contingency)
 - Also thinking about Near Detector items to address systematic issues
 - e.g. in a possible scenario where $\sin^2(2\theta_{13})$ is small and all experiments in the next round are chasing limits, not signals.
 - Larger Near Detector, 3 PVC modules wide instead of 2
 - Better event containment, can compare left/right samples to check the background we are extrapolating to Ash River
 - Another Near Detector, perhaps mobile in another larger hall to look for LSND / MiniBooNE effects at fixed L, variable E
 - Current Near Det at L/E = 0.4, but short baseline oscillation signals are above 0.4. Those events occur downstream of our Near Detector.
 - SciNOvA in front of our Near Detector.
 - Solid scintillator device (SciBooNE already took data) with half the cell size of NOvA to check our event pattern recognition & identification.
 - Testbeam NOvA module in an electron beam at Fermilab

20 J. Cooper, Fermilab Institutional Review, June 6-9, 2011

SUMMARY

- The NOvA Project continues to make good progress.
- The project has sufficient funding and contingency
- The project schedule has slipped about 6 months, but we still have substantial float to CD-4 and funds to pursue work-arounds.
- Still a major challenge ahead – fill this hall !

Backup slides

J. Cooper, Fermilab Institutional Review, June 6-9, 2011

Institutional contributions by WBS Level 2

- Accelerator and NuMI Upgrades
 - Fermilab
- Site and Building
 - Fermilab, U of Minnesota
- Scintillator
 - Indiana U, Fermilab, Southern Methodist U
- Fiber
 - Michigan State U, U Texas Dallas
- PVC Extrusions
 - ANL, Fermilab, U of Minnesota
- Extrusion Modules
 - U of Minnesota
- Electronics
 - Caltech, Harvard, U of Virginia, Indiana, Tufts U, Fermilab, Minnesota
- Data Acquisition
 - Fermilab, Minnesota, Indiana, U of South Carolina, U of Minnesota Duluth
- Detector Assembly
 - . ANL, Fermilab, Minnesota

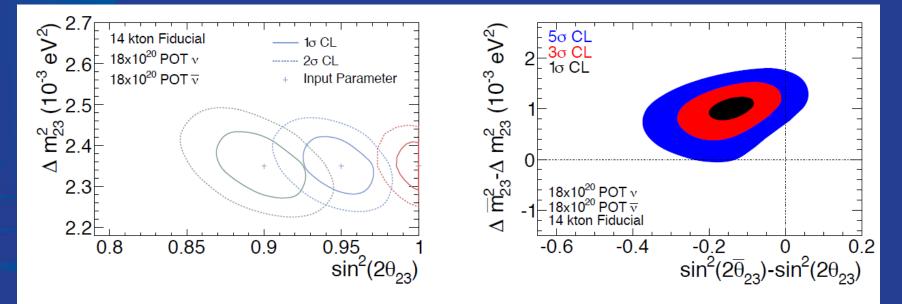
What NOvA can do in various θ_{13} scenarios

• sin²(2θ₁₃) ≈ 0.1

- Determine the mass ordering for half of the δ space at the 1-3 σ level; combining with T2K, determine the mass ordering for the other half of the δ range at 1-2 σ level.
- Exclude about half of the δ space at the 1-2 σ level.
- Combining with Daya Bay, determine whether v_3 couples more strongly to v_{μ} or v_{τ} at the 2 σ level if sin²(2 θ_{23}) < 0.97. (See G. Feldman talk at P5, Feb 2008)

• $\sin^2(2\theta_{13}) \approx 0.06$

- Determine the mass ordering for half of the δ space at the 1-2 σ level; combining with T2K, determine the mass ordering for the other half of the δ range at 1-2 σ level.
- Exclude about half of the δ space at the 1-2 σ level.
- Combining with Daya Bay, determine whether v_3 couples more strongly to v_{μ} or v_{τ} at the 2 σ level if sin²(2 θ_{23}) < 0.94. (See G. Feldman talk at P5, Feb 2008)


• $\sin^2(2\theta_{13}) \approx 0.03$

- Determine the mass ordering for a quarter of the δ space at the 1 σ level.
- Exclude about half of the δ space at the 1-2 σ level.
- sin²(2θ₁₃) ≈ 0.01
 - See a signal at the 1-3 σ level, confirming weak signals seen in other experiments.
 (Or, we might be another voice to sort out conflicting results from Double CHOOZ, Daya Bay, RENO, T2K)

MINOS neutrino / anti-neutrino asymmetry


 Sensitivity after 3 years each of neutrino and anti-neutrino beam If the MINOS neutrino / anti-neutrino result persists, this is the sensitivity of NOvA to the difference in the parameters

🛟 Fermilab

Off-Axis Beam

Medium Energy Tune

