### Neutrinos at CERN

Tomoko Ariga (Kyushu University)

### This talk has been prepared with the FASER, NA65/DsTau, SHiP, SND@LHC, XSEN Collaborations

Other neutrino-related activities in Neutrino Platform, NA61, NA62, ENUBET are covered by the other talks

### Physics motivations

- Studying high-energy neutrinos in unexplored energy regime
  - Use neutrinos from the LHC
  - High energy frontier of man-made neutrinos
  - Cross section measurements of different flavors at high energy
    - $v_{\tau}$  and  $v_{e}$  at the highest energy ever
  - Search for new physics effects

- Studying tau neutrinos
  - One of the least studied particles
  - Only a few measurements
    - Direct  $v_{\tau}$  beam: DONuT
    - Oscillated: OPERA, Super-K, IceCube
  - Large uncertainty on the cross section
  - Precise study with high-statistics experiments at the **SPS**



### Neutrino experiments discussed in this talk

- New experiment/projects at the LHC to study high-energy neutrinos in unexplored energy regime
  - FASER*v*: Technical proposal in Oct.
     2019. Approved by CERN in Dec
     2019. Preparing for data taking in
     LHC Run3 (2021-2024).
  - XSEN, SND@LHC:
  - XSEN Letter of Intent in Sep 2019.
  - SND@LHC Letter of Intent in Feb 2020. Aiming to take data from 2022.

- Fixed-target experiments at the SPS for high-statistics tau-neutrino studies
  - SHiP neutrino program for detecting ν<sub>τ</sub> with high statistics: Technical proposal in Apr 2015 and Comprehensive Design Report in Dec 2019. Aiming to take data after LS3.
  - NA65/DsTau for studying ν<sub>τ</sub> production and forward charm production: Approved by CERN in Jun 2019. Physics run from 2021.

### Neutrino experiments at the LHC

- Exploit the LHC as a neutrino source
- There has been a longstanding interest in detecting them, e.g.,
  - A. De Rujula, R. Ruckl, Neutrino and muon physics in the collider mode of future accelerators (1984)
  - Klaus Winter, Detection of the tau neutrino at the LHC (1990)
  - F. Vannucci, Neutrino physics at LHC/SSC (1993)
  - A. De Rujula, E. Fernandez, J.J. Gomez-Cadenas, Neutrino fluxes at future hadron colliders (1993)
  - H. Park, The estimation of neutrino fluxes produced by proton-proton collisions at  $\sqrt{s} = 14$  TeV of the LHC (2011)
- Investigation of possible sites has been performed in recent years



### **FASER***v*



- FASER is a small and fast experiment to be installed in the LHC to take data in LHC Run3.
- FASER (new particle searches) approved by CERN in Mar. 2019.
  - Targeting light, weakly-coupled new particles at low  $p_T$ .
  - Funded by the Heising-Simons and Simons Foundations with support from CERN.
- FASER $\nu$  (neutrino measurements) approved by CERN in Dec. 2019.
  - Will perform first measurements of neutrinos from a collider and in unexplored energy regime.
  - The detector will be centered on the beam axis to maximizes fluxes of all neutrino flavors.
  - Funded by the Heising-Simons Foundation and grants from JSPS and the Mitsubishi Foundation.





### *In-situ* measurements in 2018: Detector environment







Emulsion detectors were installed to investigate TI18 and TI12.

٠

10<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

10

• The measured charged particle flux was low and consistent with the FLUKA prediction.

|      | Normalized flux<br>(fb/cm <sup>2</sup> ) |  |  |  |
|------|------------------------------------------|--|--|--|
| TI18 | $(2.6 \pm 0.7) \times 10^4$              |  |  |  |
| TI12 | $(3.0 \pm 0.3) \times 10^4$              |  |  |  |

• The measurements also showed the radiation was low and not problematic.

#### Feasible to perform neutrino measurements!



### 2018 test run data: Towards first detection of neutrinos from the LHC



- A 30 kg emulsion detector was installed in TI18 during 2018 running and 12.5 fb<sup>-1</sup> data collected.
- Emulsion films were developed and scanned.
- Detected several neutral vertices (neutrinos or neutral hadrons).
- Working on the robust background estimate.

FASER $\nu$  detector will have better performance (longer detector with muon ID capability).

## Detector for the LHC Run3 (2021-2024)

- **Emulsion/tungsten detector** and interface silicon tracker will be placed in front of the main FASER detector to be coupled with the **FASER magnetic spectrometer**.
- Allows to distinguish all flavor of neutrino interactions.
  - 1000 1-mm-thick tungsten plates, interleaved with emulsion films
  - $25x25 \text{ cm}^2$ , 1.3 m long, 1.2 ton detector ( $285X_0$ )
  - Emulsion films will be replaced every 30-50 fb<sup>-1</sup> during scheduled LHC technical stops (3 times per year)
  - **Muon identification** by their track length in the detector  $(10\lambda_{int})$
  - **Muon charge identification** with hybrid configuration  $\rightarrow$  distinguishing  $v_{\mu}$  and  $\bar{v}_{\mu}$
  - **Neutrino energy** measurement with ANN by combining topological and kinematical variables ( $\Delta E/E \sim 30\%$ )



### Neutrino event rate



- **FASER***v* will be centered on the LOS (in the FASER trench) to maximizes fluxes of all neutrino flavors.
- ~10000 CC interactions are expected in LHC Run3!



Expected number of CC interactions in FASER $\nu$  in Run3 (14 TeV LHC, 150 fb<sup>-1</sup>)

|                             | LOI         | FLUKA       |  |
|-----------------------------|-------------|-------------|--|
| $ u_e$ , $ar{ u}_e$         | 814 , 456   | 2986 , 1261 |  |
| $ u_{\mu}$ , $ar{ u}_{\mu}$ | 4452 , 1366 | 8437 , 2737 |  |
| $ u_{	au}$ , $ar{ u}_{	au}$ | 15 , 7      | 110 , 55    |  |

For the LOI, EPOS-LHC, QGSJET and SIBYLL (for light hadrons) and SIBYLL and Pythia8 (for heavy hadrons) were used. For the FLUKA simulation, DPMJET was used.

Thanks to F. Cerutti, M. Sabaté-Gilarte, A. Tsinganis, and the CERN STI group for the FLUKA simulation.

- The LOI estimates have been cross checked independently.
  - Differences in the simulations (generators, magnets) were identified.
     Updating the neutrino fluxes is in progress.

#### • Work in progress for quantifying and reducing these uncertainties.

- Creating a dedicated forward physics tune with Pythia8, using forward data.
- Including tuning uncertainties.



Neutrinos interacting with FASERv

10<sup>4</sup>

Difference of the generators

**Other theoretical study: Poster ID 118,** Neutrinos in the farforward region at the LHC (session #2)

9

### Prospects for 2021-2024



#### **Cross section measurements at high energy**

- Three flavors in an energy range where cross sections are unconstrained
- Additional physics studies Eur. Phys. J. C 80 (2020) 61, arXiv:1908.02310 10<sup>-2</sup>
  - Charm/beauty production channels in  $\nu$  CC
  - Neutrino production via heavy meson decays  $\rightarrow$  Intrinsic charm and prompt neutrino study
  - Possibility to study sterile neutrino oscillations
  - Possibility to probe new physics models

Possibility of probing tau neutrino production from the decay of light gauge bosons, F. Kling, arXiv:2005.03594





Projected precision of FASERv measurement at 14-TeV LHC (150 fb<sup>-1</sup>)

### Emulsion detector technology



Thanks to H. Rokujo, M. Yoshimoto, T. Nakano

#### Detector production

- Upgrading the emulsion facility in Nagoya University
  - Large-scale gel production machine and film production system
- Targeted performance of the film production system: 12.5 m<sup>2</sup>/day
- Would be ready for mass production in July-August 2020



#### Fast readout of emulsion films

- Great progress in the readout speed
- ~100 times faster than OPERA

HTS paper: M. Yoshimoto, T. Nakano, R. Komatani, H. Kawahara, PTEP 10 (2017) 103H01.

|       | Start<br>year | Field of view<br>(mm <sup>2</sup> ) | Readout speed<br>(cm²/h/layer) |
|-------|---------------|-------------------------------------|--------------------------------|
| S-UTS | 2006          | 0.05                                | 72                             |
| HTS-1 | 2015          | 25                                  | 4700                           |
| HTS-2 | 2021          | 50                                  | 25000                          |



## Civil engineering and infrastructure work

- TI12 area was cleaned up.
- Civil engineering work to allow FASER/FASERv installation finished on schedule, just before the CERN shutdown.
- Access over the LHC machine has been prepared.



Acknowledge great support from many CERN teams: SMB-FS, EN-ACE, EN-EA, EN-EL, EN-HE, EN-CV, HSE – with support from PBC





### XSEN, SND@LHC proposals

- **XSEN** (X-Section of Energetic Neutrinos) investigated potential and feasibility of a neutrino experiment at the LHC focusing on high energy neutrinos in two  $\eta$  ranges: 4 <  $\eta$  < 5 (leptonic W decays) and 6.5 <  $\eta$  < 9.5 (c and b decays, mostly from  $D_s$  decays).
  - S. Buontempo et al., arXiv:1804.04413
  - N. Beni et al., J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008
  - N. Beni et al., arXiv:2004.07828



- Proposed an experiment in TI18
  - The opposite site of FASER $\nu$  with respect to the ATLAS IP
  - XSEN LOI in Sep. 2019 (CERN-LHCC-2019-014 / LHCC-I-033)
  - **SND@LHC** LOI in Feb. 2020 (CERN-LHCC-2020-002 / LHCC-I-035)
    - Aiming to operate off axis (~30 cm from the LOS) to probe a different pseudorapidity range from FASER $\nu$ .

Thanks to G.M. Dallavalle, G. De Lellis



In the 3 sites tested near CMS, prohibitive levels of backgrounds were found.



### SND@LHC

### SND@LHC detector concept



### Prospects

- SND@LHC LOI is to be evaluated in the LHCC.
- The infrastructure can be installed in 6 months from the approval.
- Aiming to start the first run in 2022.

#### Selection of $\tau$ lepton candidates

IP of the daughter track w.r.t. the neutrino vertex >10  $\mu$ m



#### Hadron energy reconstruction



#### **Expected event rate by FLUKA with DPMJET**

For 25 fb<sup>-1</sup> (total mass 380 kg)

For 150 fb<sup>-1</sup> (total mass 850 kg)

**Off-axis (~30 cm from the LOS)** 

|                             | CC interactions |  |  |
|-----------------------------|-----------------|--|--|
| $ u_e$ , $ar{ u}_e$         | 21 , 11         |  |  |
| $ u_{\mu}$ , $ar{ u}_{\mu}$ | 62 , 27         |  |  |
| $ u_{	au}$ , $ar{ u}_{	au}$ | 1,0             |  |  |

|                             | CC interactions |  |  |  |
|-----------------------------|-----------------|--|--|--|
| $ u_e$ , $ar{ u}_e$         | 332 , 174       |  |  |  |
| $ u_{\mu}$ , $ar{ u}_{\mu}$ | 975 , 429       |  |  |  |
| $ u_{	au}$ , $ar{ u}_{	au}$ | 18 , 7          |  |  |  |

Thanks to F. Cerruti's group for the FLUKA simulation.







### Neutrinos at the SPS





#### Tau-neutrino measurements with high statistics

#### - Need to study both the production and detection for a precise measurement of the $v_{\tau}$ cross section



No data for  $D_s$  differential cross sections for 400 GeV p beam. Large systematic uncertainty in the  $v_{\tau}$  flux prediction (~50%).

#### NA65/DsTau, SHiP-charm

reduced to few % level in future experiments.



Number of  $v_{\tau}$  interactions

120000

100000

in the SHiP neutrino detector

-b = 1.0 - b = 0.8 - b = 0.6

### NA65/DsTau experiment

DsTau Collaboration, JHEP 01 (2020) 033. doi:10.1007/JHEP01(2020)033

#### **Physics goals**

- Measurement of  $v_{\tau}$  production
  - Measurement of *D<sub>s</sub>* differential production cross section
  - Reduction of systematic uncertainty in the cross section measurement
  - Important input for future  $v_{\tau}$ experiment: e.g. SHiP neutrino program

#### • Forward charm production

- Source of prompt neutrinos
- Large experimental and theoretical uncertainties
- Could be a key input for high-energy neutrino measurements





# Pilot run data and prospects

#### Setup at the CERN SPS H4 beamline







#### **Pilot run analysis**

- Full area of ~3000 emulsion films (~40 m<sup>2</sup>) scanned by the HTS-1.
- 400 GeV proton interactions and charm production being studied (aiming to study forward charm production).

#### Physics run in 2021-2022

- Beam characteristics being studied.
- Both molybdenum and tungsten will be used as target materials.
- **2.5x10<sup>8</sup> proton interactions and** ~4x10<sup>5</sup> charm events are expected in the physics run. ~1000  $D_s \rightarrow \tau \rightarrow$ *X* events will be detected for the measurement of  $D_s$  differential production cross section.

### ral decay $f(x) = \frac{159 \text{ double-charm candidates}}{159 \text{ double-charm candidates}}$ $f(x) = \frac{159 \text{ double-charm candidates}}{1000 \text{ double-charm candidates}}$ $f(x) = \frac{159 \text{ double-charm candidates}}{1000 \text{ double-charm candidates}}$ $f(x) = \frac{159 \text{ double-charm candidates}}{1000 \text{ double-charm candidates}}$ $f(x) = \frac{159 \text{ double-charm candidates}}{1000 \text{ double-charm candidates}}$



500 µm

### SHiP

#### A fixed target experiment proposal at the SPS

- Looking for new physics in intensity frontier
  - Technical Proposal in Apr. 2015, arXiv:1504.04956
  - Comprehensive Design Study Report in Dec. 2019

#### • The SHiP facility

- CERN-based Beam Dump Facility (BDF)
- Slow extraction (1 sec)
- High intensity proton beam, 400 GeV/c
  - 4x10<sup>13</sup> protons per spill, 2x10<sup>20</sup> pot / 5 years



SHiP

Thanks to G. De Lellis, M. Komatsu

HNL searches will be covered by the next talk



### Neutrinos at SHiP





### Scattering and Neutrino Detector (SND)



#### Experimental requirements

- Reconstruct v interactions  $\rightarrow$  Emulsion Cloud Chamber (ECC) technique + Target Tracker (TT)
- Tag  $\nu$  flavor  $\rightarrow$  ECC technique +  $\mu$  ID system
- Tag  $\nu$  and anti- $\nu \rightarrow$  Magnetized target

#### SND magnetized target

- ECC brick: 57 emulsion films interleaved with lead plates, total target mass: ~8 tons
- Followed by compact emulsion spectrometer, 1.2 T horizontal field
- SciFi target tracker
  - Provide time stamp and link muon track information from the target to the magnetic spectrometer

#### Muon ID system

- Iron absorbers, RPC as tracking detectors
- Sensitive area of ~2×4 m<sup>2</sup>



### Neutrino physics prospects @BDF (1)

• Huge neutrino flux



#### **Expected CC DIS interactions for 2x10<sup>20</sup> pot**

|                             | $\langle E \rangle$ | CC DIS           |
|-----------------------------|---------------------|------------------|
|                             | [GeV]               | interactions     |
| $N_{\nu_e}$                 | 59                  | $1.1	imes 10^6$  |
| $N_{\nu_{\mu}}$             | 42                  | $2.7 	imes 10^6$ |
| $N_{\nu_{\tau}}$            | 52                  | $3.2 	imes 10^4$ |
| $N_{\overline{\nu}_e}$      | 46                  | $2.6 	imes 10^5$ |
| $N_{\overline{\nu}_{\mu}}$  | 36                  | $6.0 	imes 10^5$ |
| $N_{\overline{\nu}_{\tau}}$ | 70                  | $2.1 	imes 10^4$ |

- Measuring  $v_{\tau}$  and  $\overline{v}_{\tau}$  cross sections
  - Expectations in 5 years run
  - ~10000 signal events are expected to be detected

#### Expected number of $\nu_\tau$ and $\bar\nu_\tau$ signal events

| Decay channel          | $\nu_{	au}$ | $\overline{ u}_{	au}$ |
|------------------------|-------------|-----------------------|
| $\tau \rightarrow \mu$ | 1200        | 1000                  |
| $\tau \to h$           | 4000        | 3000                  |
| $\tau \to 3h$          | 1000        | 700                   |
| Total                  | 6200        | 4700                  |
|                        |             |                       |



### Neutrino physics prospects @BDF (2)



#### First evaluation of F<sub>4</sub> and F<sub>5</sub>

Not accessible with other neutrinos

$$\frac{d^2 \sigma^{\nu(p)}}{dx \, dy} = \frac{G_{\rm F}^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \left( \left( y^2 x + \frac{m_{\tau}^2 y}{2E_{\nu} M} \right) F_1 + \left[ \left( 1 - \frac{m_{\tau}^2}{4E_{\nu}^2} \right) - \left( 1 + \frac{M x}{2E_{\nu}} \right) y \right] F_2 \\ \pm \left[ xy \left( 1 - \frac{y}{2} \right) - \frac{m_{\tau}^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_{\tau}^2 (m_{\tau}^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_{\tau}^2}{E_{\nu} M} F_5 \right).$$



S. Alekhin et al., Rep. Prog. Phys. 79 (2016) 124201

- v induced charm production studies
  - Understanding the strange quark nucleon content.
  - Anti-charm production in charged current anti-neutrino interactions selects anti-strange quark in the nucleon.





The reduction of the uncertainty is significant in the ranges 0.03–0.3 for  $s^+$  (and 0.08–0.3 for  $s^-$ ).

### SHiP-charm project



- SHiP-charm project aims at measuring the charm differential production cross section in the SHiP target, including cascade production with the 400 GeV/c proton beam
- An optimization run was performed in July 2018 at the H4 beam line of the SPS
  - Proton target: emulsion-lead brick
  - 1.5x10<sup>6</sup> pot integrated
  - A double-charm candidate event was detected
- **Another run** with larger statistics is planned after LS2
  - 5x10<sup>7</sup> pot will be integrated
  - ~1000 fully reconstructed charm events are expected

**Planned hybrid system**, combining the emulsion technique with a spectrometer to provide the charge and momentum measurement of charmed hadron decay daughters and the muon identification





Double charm decay topology



#### **EVENT TOPOLOGY:**

Primary vertex multiplicity: 31 Secondary vertices detected: 2

#### Decay vertex #1:

- VO-like topology
- Number of prongs: 2
- Impact parameters to primary vtx: 594µm, 253 µm
- Flight length: 2.1 mm

#### Decay vertex #2:

kink-like topology
Number of prongs: 1

- Kink angle: 31 mrad
- Flight length: 12.7 mm

### Summary

- New experiments at the LHC will study high-energy neutrinos in unexplored energy regime (~TeV).
  - FASER<sub>v</sub>: Will measure neutrinos from a collider for the first time. ~10000 CC interactions (distinguishing the flavors) are expected in 2021-2024.
  - XSEN, SND@LHC: Aiming to measure ~2000 CC interactions (distinguishing the flavors) in 2022-2024.
- Fixed-target experiments at the SPS offers a unique opportunity for highstatistics tau-neutrino studies.
  - **SHiP neutrino program**: Aiming to detect ~10000  $v_{\tau}$  and  $\bar{v}_{\tau}$  CC interactions after LS3.
  - **NA65/DsTau**: Will study  $v_{\tau}$  production / forward charm production in 2021-2022.

### Backup slides



### The FASER detector

**Technical proposal: FASER**,

CERN-LHCC-2018-036 ; LHCC-P-013





### Particle momentum measurement by multiple Coulomb scattering (MCS)

- Sub-micron precision alignment using muon tracks
  - Our experience =  $0.4 \ \mu m$  (in the DsTau experiment)
- This allow to measure particle momenta by MCS, even above 1 TeV.





### Neutrino energy reconstruction

Neutrino energy will be reconstructed by combining topological and kinematical variables

An ANN algorithm was built with topological variables

- # of charged tracks  $\rightarrow E_h$
- # of  $\gamma$  showers  $\rightarrow E_h$
- inverse of lepton angle  $\rightarrow E_l$
- sum of inverse of hadron track angles  $\rightarrow E_h$
- inverse of median of all track angles  $\rightarrow E_h$ ,  $E_l$ kinematical info (smeared)
- lepton momentum  $\rightarrow E_l$
- sum of charged hadron momenta  $\rightarrow E_h$
- sum of energy of  $\gamma$  showers  $\rightarrow E_h$







### **DsTau**

## Charmed particle differential production cross section results

 $\frac{a}{dx_F dp_T^2} \propto (1 - |x_F|)^n \exp((1 - |x_F|)^n)$ longitudinal transverse dependence dependence

1

• No experimental result effectively constraining the  $D_s$  differential cross section at the desired level or consequently the  $v_{\tau}$  production

| Experiment      | Beam type /<br>energy (GeV) | σ(D <sub>s</sub> )<br>(μb/nucl) | σ(D <sup>±</sup> )<br>(μb/nucl) | σ(D <sup>0</sup> )<br>(μb/nucl) | σ(Λ <sub>c</sub> )<br>(μb/nucl) | $x_F$ and $p_T$ dependence:<br>n and $b$ (GeV/c) <sup>-2</sup>                                                                                             |
|-----------------|-----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HERA-B          | p / 920                     | 18.5 ± 7.6<br>(~11 events)      | 20.2 ± 3.7                      | 48.7 ± 8.1                      | -                               | $n(D^0, D^+) = 7.5 \pm 3.2$                                                                                                                                |
| E653            | <i>p</i> / 800              | -                               | 38 ± 17                         | 38 ± 13                         |                                 | $n(D^{0}, D^{+}) = 6.9^{+1.9}_{-1.8}$<br>$b(D^{0}, D^{+}) = 0.84^{+0.10}_{-0.08}$                                                                          |
| E743 (LEBC-MPS) | <i>p /</i> 800              | -                               | 26 ± 8                          | 22 ± 11                         |                                 | $n(D) = 8.6 \pm 2.0$<br>$b(D) = 0.8 \pm 0.2$                                                                                                               |
| E781 (SELEX)    | Σ <sup>–</sup> (sdd) / 600  |                                 |                                 |                                 |                                 | ~350 $D_s^-$ events, ~130 $D_s^+$ events ( $x_F$ >0.15)<br>$n(D_s^-) = 4.1 \pm 0.3$ (leading effect)<br>$n(D_s^+) = 7.4 \pm 1.0$                           |
| NA27            | <i>p</i> / 400              |                                 | 12 ± 2                          | 18 ± 3                          |                                 |                                                                                                                                                            |
| NA16            | <i>p</i> / 360              |                                 | 5 ± 2                           | 10 ± 6                          |                                 |                                                                                                                                                            |
| WA92            | π / 350                     | 1.3 ± 0.4                       |                                 | 8 ± 1                           |                                 |                                                                                                                                                            |
| E769            | p / 250                     | 1.6 ± 0.8                       | 3 ± 1                           | 6 ± 2                           |                                 | $320 \pm 26 \text{ events } (D^{\pm}, D^{0}, D_{s}^{\pm})$ $n(D^{\pm}, D^{0}, D_{s}^{\pm}) = 6.1 \pm 0.7$ $b(D^{\pm}, D^{0}, D_{s}^{\pm}) = 1.08 \pm 0.09$ |
| E769            | π <sup>±</sup> / 250        | 2.1 ± 0.4                       |                                 | 9 ± 1                           |                                 | 1665 ± 54 events $(D^{\pm}, D^{0}, D_{s}^{\pm})$<br>$n(D^{\pm}, D^{0}, D_{s}^{\pm}) = 4.03 \pm 0.18$<br>$b(D^{\pm}, D^{0}, D_{s}^{\pm}) = 1.08 \pm 0.05$   |
| NA32            | π / 230                     | 1.5 ± 0.5                       |                                 | 7 ± 1                           |                                 |                                                                                                                                                            |

Results from LHCb at  $\sqrt{s}$  = 7, 8 or 13 TeV are not included since the energies differ too much.



### Angular resolution

Align films with proton tracks (100 tracks/mm<sup>2</sup>)





Angular resolution vs track length



Residual of track segments to fitted line (RMS)  $\simeq$   $0.4~\mu m$ 



### *D<sub>s</sub>* momentum reconstruction by Artificial Neural Network using topological variables



- Difficult to measure *D<sub>s</sub>* momentum directly due to short lifetime
- $\rightarrow D_s$  momentum reconstruction by topological variables
- A Neural Network with 4 variables was trained with MC events
- Momentum resolution  $\Delta p/p = 20\%$



# Expected precision of $D_s$ differential cross-section measurement

