NEUTRINO INTERACTION MEASUREMENTS ON ARGON

Kirsty Duffy, Fermi National Accelerator Laboratory
on behalf of the MicroBooNE Collaboration
XXIX International Conference on Neutrino Physics
23rd June 2020
Cross-section measurements on argon are vital to reduce systematic uncertainties for the SBN program and DUNE.

With low thresholds and 4π acceptance, Liquid Argon Time Projection Chambers (LArTPCs) are powerful detectors to study detailed final state topologies and quantitatively inform theoretical models.

Expanded statistics, better detector understanding since Neutrino 2018.

Are models able to describe ν-Ar data?

ArgoNeuT pathfinder, low statistics

MicroBooNE high statistics, but initial measurements had large systematic uncertainties

Precision MicroBooNE improved detector understanding → high statistics, low uncertainties

Future experiments: higher statistics (SBND, ICARUS, DUNE-ND) and lower systematics due to measurements by LArIAT, ProtoDUNE.
Many measurements of ν-Ar scattering

- **ν_μ CC inclusive cross section**
 - Single-differential cross section
 - Updated single-differential cross section

- **ν_μ exclusive channels**
 - Charged-particle multiplicity
 - ν_μ CCQE-like scattering
 - ν_μ and $\overline{\nu}_\mu$ CC2p production
 - ν_μ CCπ^0 production
 - ν_μ and $\overline{\nu}_\mu$ NCCπ^0 production

- **ν_μ NC 1p production**

- **Other measurements**
 - ν_e and $\overline{\nu}_e$ scattering (inclusive)
 - MeV-scale physics

- **MeV-scale physics**
 - Limits on millicharged particles

- **Double-differential cross section**

- **Single-differential cross section with updated detector and interaction models**
 - MICROBOONE-NOTE-1069-PUB

- **ν_μ and $\overline{\nu}_\mu$ CCπ^+ production**

- **ν_μ and $\overline{\nu}_\mu$ Coherent CCπ^+ production**

- **ν_μ CC kaon production**
 - MICROBOONE-NOTE-1071-PUB

- **ν_μ NC 1p production**
 - MICROBOONE-NOTE-1067-PUB

- **Limits on millicharged particles**
Many measurements of ν-Ar scattering

- ν_μ CC inclusive cross section
 - Single-differential cross section
 - Updated single-differential cross section

- ν_μ exclusive channels
 - Charged-particle multiplicity
 - ν_μ CCQE-like scattering
 - ν_μ and $\bar{\nu}_\mu$ CC2p production
 - Phys. Rev. D 90, 012008 (2014)
 - ν_μ CCπ^0 production
 - ν_μ and $\bar{\nu}_\mu$ NCπ^0 production

- Double-differential cross section

- ν_μ and $\bar{\nu}_\mu$ CCπ^+ production

- ν_μ and $\bar{\nu}_\mu$ Coherent CCπ^+ production

- ν_μ CC kaon production
 - MICROBOONE-NOTE-1071-PUB

- ν_μ NC $1p$ production
 - MICROBOONE-NOTE-1067-PUB

- Other measurements
 - ν_e and $\bar{\nu}_e$ scattering (inclusive)

- MeV-scale physics
 - MICROBOONE-NOTE-1076-PUB
 - Limits on millicharged particles
ArgoNeuT is a 40x47x90cm3 LArTPC

- **2 planes** of wires with 4mm spacing collect charge from drifting electrons following secondary particle tracks
- **1.35x10^{20} POT** data in NuMI beamline at Fermilab 2009-2010: $<E_{\nu e}> = 4.3$ GeV, $<E_{\bar{\nu}e}> = 10.5$ GeV
- Placed in front of MINOS near detector at Fermilab: use as **tracking spectrometer**
MicroBooNE: 170 ton LArTPC

- 3 planes of wires (vertical, +60°, -60°) with 3mm spacing
- 32 PMTs collect light from flash at time of interaction
- Sits in two neutrino beams at Fermilab: BNB (on-axis, \(\langle E_{\nu\mu} \rangle = 800 \text{ MeV} \)) and NuMI (off-axis, \(\langle E_{\nu_e} \rangle = 650 \text{ MeV} \))
- Stable detector operation since 2015: longest-running LArTPC to date
- >95% DAQ uptime
- \(1.52 \times 10^{21} \) POT collected in total (analyses shown here use subsets, not full POT)
- From December 2017: data with Cosmic Ray Tagger (CRT)

Thank you to Fermilab Accelerator Division, Cryogenics team, and Operations team!
GETTING THE MOST OUT OF LArTPCs

- MicroBooNE Collaboration has made huge improvements in our understanding of the detector since Neutrino 2018.
- Detailed understanding of detector is key to our R&D mission for future LArTPCs.
- Improved signal processing (2D deconvolution) accounts for interfering wire signals on all three planes.
- Tracking is hard when particles go parallel to wires. Precise calorimetry on all planes → 3D tracking → 4π particle identification.
IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

- Cosmic rejection power (without kinematic requirements) increased by factor of 8 compared to previous publications
- **High efficiency**: 80.4% for ν_μCC (87.6% for ν_eCC)
- **Increased statistics**: 11.3k events, compared to 4.3k events in same data set for 2019 CC inclusive measurement

Wire-Cell 3D imaging and clustering

- Simultaneously match all clusters in event to light → find cluster consistent with neutrino-induced flash
Many measurements of ν-Ar scattering

ν_μ CC inclusive cross section

- Single-differential cross section
- Updated single-differential cross section

ν_μ exclusive channels

- Charged-particle multiplicity
- ν_μ CCQE-like scattering
- ν_μ and $\bar{\nu}_\mu$ CC2p production
 - Phys. Rev. D 90, 012008 (2014)
- ν_μ CCπ0 production
- ν_μ and $\bar{\nu}_\mu$ NCπ0 production

Other measurements

- ν_e and $\bar{\nu}_e$ production (inclusive)
- MeV-scale physics
- MeV-scale physics
 - MICROBOONE-NOTE-1076-PUB
- Limits on millicharged particles
CC INCLUSIVE CROSS SECTION MEASUREMENT

PRL 123, 131801 (2019)

- Selection presented at Neutrino 2018 → new since then: **double-differential** cross section measurement

- **First time** double-differential cross section has been measured on argon: compared to worldwide interaction generators

- All models **overpredict in high-momentum, forward going bins**: interesting physics in this region!

MicroBooNE 1.6e20 POT

-1.00 ≤ cos(θ_{recoil}^μ) < 0.50

0.94 ≤ cos(θ_{recoil}^μ) < 1.00

χ²/N_{bins}

<table>
<thead>
<tr>
<th></th>
<th>245.9/42</th>
<th>108.8/42</th>
<th>172.9/42</th>
<th>126.5/42</th>
</tr>
</thead>
</table>

Kirsty Duffy
IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

Selected Events

- CC (signal), 50%
- ν_e, ν_τ, CC, 0.054%
- ν_μ, CC, 0.44%
- NC, 1.6%
- OUTFV, 7.6%
- Dirt, 4.3%
- Cosmic, 6.4%
- Data (Beam-off), 29%
- Stat. Unc.
- Data (Beam-on, stat. only)

Previous Measurement

- MicroBooNE, 1.6e+20 POT
- G\textsc{enie} v2.12.2

PRL 123, 131801 (2019)
IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

MicroBooNE 1.6e+20 POT

GENIE v2.12.2

Selected Events

- CC (signal), 50%
- CC (not \(\mu\)), 0.054%
- CC, 0.44%
- NC, 1.6%
- OUTFV, 7.6%
- Dirt, 4.3%
- Cosmic, 6.4%
- Data (Beam-off), 29%
- Stat. Unc.
- Data (Beam-on, stat. only)

MicroBooNE Preliminary

Accumulated POT: 7.644e+18

Tuned GENIE v3.0.6

Data (Beam-on, stat. only)

Data (Beam-off): 10.8%

Previous Measurement

PRL 123, 131801 (2019)

Current Measurement

MICROBOONE-NOTE-1069-PUB

Kirsty Duffy
Improved detector understanding, reconstruction, CRT \(\rightarrow\) higher purity

\[\nu_\mu \text{CC (signal) purity: } 50\% \rightarrow 71.9\%\]

Entering backgrounds: 33.3\% \(\rightarrow\) 13.2\%
Better data-simulation agreement from improved neutrino interaction modeling

- **GENIE v2.12.2 → GENIE v3.0.6**
- **Tuned** CCQE and CCMEC models to T2K ν_μ CC0\pi data
- T2K data is on a carbon target → tuning seems to give **good agreement with MicroBooNE’s argon-target data**

Improved Interaction Modeling Enables Better Measurements

Better data-simulation agreement from improved neutrino interaction modeling

- **GENIE v2.12.2 → GENIE v3.0.6**
- **Tuned** CCQE and CCMEC models to T2K ν_μ CC0\pi data
- T2K data is on a carbon target → tuning seems to give **good agreement with MicroBooNE’s argon-target data**

GENIE v3.0.6 models used:
DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

Flux-integrated cross section **consistent with previous measurement**

Drastically reduced systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Previous Analysis</td>
</tr>
<tr>
<td>Detector response</td>
<td>16.2%</td>
</tr>
<tr>
<td>Cross section</td>
<td>3.9%</td>
</tr>
<tr>
<td>Flux</td>
<td>12.4%</td>
</tr>
<tr>
<td>Dirt background</td>
<td>10.9%</td>
</tr>
<tr>
<td>Cosmic ray background</td>
<td>4.2%</td>
</tr>
<tr>
<td>POT counting</td>
<td>2.0%</td>
</tr>
<tr>
<td>CRT</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Sys. Error</td>
<td>23.8%</td>
</tr>
<tr>
<td>Statistics</td>
<td>1.4%</td>
</tr>
<tr>
<td>Total (Quadratic Sum)</td>
<td>23.8%</td>
</tr>
</tbody>
</table>

PRL 123, 131801 (2019)
DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

Flux-integrated cross section consistent with previous measurement

Drastically reduced systematic uncertainties

Largest reduction in uncertainties comes from improved detector understanding

<table>
<thead>
<tr>
<th>Source</th>
<th>Previous Analysis</th>
<th>This Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector response</td>
<td>16.2%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Cross section</td>
<td>3.9%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Flux</td>
<td>12.4%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Dirt background</td>
<td>10.9%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Cosmic ray background</td>
<td>4.2%</td>
<td>N/A</td>
</tr>
<tr>
<td>POT counting</td>
<td>2.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>CRT</td>
<td>N/A</td>
<td>1.7%</td>
</tr>
<tr>
<td>Total Sys. Error</td>
<td>23.8%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Statistics</td>
<td>1.4%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Total (Quadratic Sum)</td>
<td>23.8%</td>
<td>12.7%</td>
</tr>
</tbody>
</table>

Accumulated POT: 7.644e+18

Source: PRL 123, 131801 (2019)
DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

Instead of cosmic ray simulation, now use overlay: simulated neutrino interactions overlaid on real cosmic data → no uncertainty in cosmic ray model

<table>
<thead>
<tr>
<th>Source</th>
<th>Previous Analysis</th>
<th>This Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector response</td>
<td>16.2%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Cross section</td>
<td>3.9%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Flux</td>
<td>12.4%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Dirt background</td>
<td>10.9%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Cosmic ray background</td>
<td>4.2%</td>
<td>N/A</td>
</tr>
<tr>
<td>POT counting</td>
<td>2.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>CRT</td>
<td>N/A</td>
<td>1.7%</td>
</tr>
<tr>
<td>Total Sys. Error</td>
<td>23.8%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Statistics</td>
<td>1.4%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Total (Quadratic Sum)</td>
<td>23.8%</td>
<td>12.7%</td>
</tr>
</tbody>
</table>

Flux-integrated cross section consistent with previous measurement

Drastically reduced systematic uncertainties
Single-differential cross section as a function of reconstructed muon momentum and angle → **very good agreement with previous measurement**, but **reduced uncertainties**

Future development towards **double-differential** cross-section measurement
Many measurements of ν-Ar scattering

- **ν_μ CC inclusive cross section**
 - Single-differential cross section
 - Updated single-differential cross section

- **ν_μ exclusive channels**
 - Charged-particle multiplicity
 - ν_μ CCQE-like scattering
 - ν_μ and $\overline{\nu}_\mu$ CC2p production
 - Phys. Rev. D 90, 012008 (2014)
 - ν_μ CCπ^0 production
 - ν_μ and $\overline{\nu}_\mu$ NCπ^0 production

- **ν_μ and ν_μ CCπ^+ production**

- **ν_μ and $\overline{\nu}_\mu$ Coherent CCπ^+ production**

- **ν_μ CC kaon production**
 - MICROBOONE-NOTE-1071-PUB

- **ν_μ NC 1p production**
 - MICROBOONE-NOTE-1067-PUB

- **Other measurements**
 - ν_e and $\overline{\nu}_e$ scattering (inclusive)
 - MeV-scale physics
 - MeV-scale physics
 - MICROBOONE-NOTE-1076-PUB
 - Limits on millicharged particles
LArTPC STRENGTH: LOW PROTON THRESHOLDS

- **Low thresholds** → probe 2p2h scattering and nuclear processes

- **MicroBooNE**: 300 MeV/c
- **ArgoNeuT**: 200 MeV/c

- **T2K**: 500 MeV/c
- **MINERvA**: 450 MeV/c

- Protons **identified by Bragg peak** in last 30 cm of track

Kirsty Duffy

300 MeV/c → 47 MeV KE
CCQE-LIKE CROSS SECTION

First extraction of $\nu_\mu-^{40}\text{Ar}$ CCQE-like cross section using a surface LArTPC

Signal: 1 muon ($p_\mu>100$ MeV/c), 1 proton ($p_p>300$ MeV/c) with extra cuts on coplanarity and transverse imbalance to enhance CCQE contribution → ~84% CC$1p0\pi$ (~81% CCQE) purity, ~20% efficiency

Good agreement with models, except at very forward muon scattering angles → low momentum transfer (similar effects previously seen in carbon scattering)
Across all kinematic variables, agreement is improved if forward muon angles are excluded.
NC1P CROSS SECTION

- Measure cross section for neutral-current single proton production
- Measurement includes events with $Q^2 \sim 2m_p T_p = 0.1$ GeV2, **significantly lower** than previous measurements
- Future development towards a measurement of **NC elastic scattering** cross section \rightarrow measure strange component of neutral-current axial form factor
CC π^{\pm} PRODUCTION

- **Highly relevant for DUNE**: dominant interaction mode at DUNE energies and less well-understood than CCQE-like scattering

- ArgoNeuT ν_μ and $\bar{\nu}_\mu$ CC π^{\pm} measurement:
 - Select **two-track events**: one matched to a track in MINOS (muon candidate)
 - **Select CC π^{\pm} events** using dE/dx of pion candidate, event topology

- MicroBooNE measurement in progress: development work focused on **muon/pion separation** and **pion reinteractions**

ArgoNeuT ν_μ

LArIAT, ProtoDUNEs
Electrons and photons produce showers in LArTPCs → important to understand for ν_e appearance searches in SBN and DUNE

π^0 interactions are a background (although often can be distinguished by energy deposition) — can also be used to verify shower reconstruction by reconstructing π^0 mass peak

MicroBooNE CCπ^0 Measurement: presented at Neutrino 2018

FIRST MEASUREMENT OF ELECTRON NEUTRINO CROSS SECTION

- Flux-averaged $\nu_e + \bar{\nu}_e$ cross section measured by ArgoNeuT
- Purity 78.9%, efficiency 10.5% \rightarrow 13 events selected
- First measurement of its kind in an energy regime highly relevant for DUNE, demonstration of fully-automated reconstruction and analysis
- MicroBooNE ν_e measurements in BNB - see “Searches for New Physics with MicroBooNE”, 2nd July
- $\nu_e + \bar{\nu}_e$ cross-section measurements in progress with NuMI beam: purity 40%, efficiency 9% \rightarrow ~ 100 events in 5×10^{19} POT

R. Fitzpatrick, Poster 139, Poster Session 4
• **CC kaon production**: rare process, few existing measurements, background for proton decay \(p \rightarrow K^+ \nu \) searches in DUNE

• Selection developed with 68% purity and 7% efficiency → expect 12 candidate interactions in \(1.3 \times 10^{21} \) POT

• **Reconstruct sub-MeV particles**: photons from nucleus de-excitation or neutron re-interactions

• Demonstration of low-threshold LArTPC capabilities

• Used in ArgoNeuT to place constraints on BSM physics (millicharged particles)
Many measurements of ν-Ar scattering

- **ν_μ CC inclusive cross section**
 - Single-differential cross section
 - Updated single-differential cross section

- **ν_μ exclusive channels**
 - Charged-particle multiplicity
 - ν_μ CCQE-like scattering
 - ν_μ and $\bar{\nu}_\mu$ CC2p production
 - Phys. Rev. D 90, 012008 (2014)
 - ν_μ CCπ^0 production
 - ν_μ and $\bar{\nu}_\mu$ NCCπ^0 production

- **ν_μ and $\bar{\nu}_\mu$ CCπ^+ production**

- **ν_μ and $\bar{\nu}_\mu$ Coherent CCπ^+ production**

- **ν_μ CC kaon production**
 - MICROBOONE-NOTE-1071-PUB

- **ν_μ NC 1p production**
 - MICROBOONE-NOTE-1067-PUB

- **Other measurements**
 - ν_e and $\bar{\nu}_e$ scattering (inclusive)
 - MeV-scale physics

- **ν_e and $\bar{\nu}_e$ scattering (inclusive)**
 - MICROBOONE-NOTE-1076-PUB

- **MeV-scale physics**
 - Limits on millicharged particles
FUTURE PROSPECTS

- This talk has focused on current results from MicroBooNE and recent results from ArgoNeuT.
FUTURE PROSPECTS

- This talk has focused on current results from **MicroBooNE** and recent results from **ArgoNeuT**

 MicroBooNE recent improvements in detector understanding directly results in **reduced systematic uncertainties** on CC inclusive measurement
 → will form the basis of new, **more precise measurements** of neutrino interactions on argon in the near future

 Additional measurements in progress: \(\nu_\mu \text{ CC} \pi^0 \), \(\nu_\mu \text{ CC} \pi^+ \), \(\nu_\mu \text{ CC-Coherent} \pi^+ \), \(\nu_\mu \text{ CC}0\pi\text{Np} \), \(\nu_\mu \text{ CC}0\pi2\text{p} \), \(\nu_\mu \text{ CC}0\pi\text{STV} \), \(\nu_\mu \text{ KDAR} \text{ CC}0\pi \), \(\nu_\mu \text{ CC}0\pi0\text{p} \), \(\nu_e \text{ CC inclusive} \), \(\nu_e \text{ CC}0\pi\text{1p} \)
FUTURE PROSPECTS

- This talk has focused on current results from MicroBooNE and recent results from ArgoNeuT.

- Exclusive measurements will be informed by test-beam measurements of charged particles in LArTPCs (e.g. interactions of pions, protons) by LArIAT and ProtoDUNE.

- In the future, look out for more measurements from upcoming experiments: SBND, ICARUS, and eventually DUNE-ND.

ICARUS will start taking data very soon.
SBND will collect 7m ν-Ar interactions in 3 years.

See talk: “ICARUS and the Fermilab Short-Baseline Neutrino Program” on 2nd July.
SUMMARY

- Cross-section measurements on argon are **vital** for the success of the SBN program and eventually DUNE.

- **Huge progress** over the past two years since Neutrino 2018 → measurements with low-energy protons, π^0s, ν_e and more are extremely valuable.

- LArTPC technology has demonstrated 4π acceptance and ability to measure sub-MeV energies — we are already able to make **precise, accurate measurements of exclusive final states**.

- First time we can confront **models tuned to carbon** with high-statistics argon data: seem to do well with the data now available.

- More (and more precise) measurements expected in the future → **stronger tests** of our models.
Cross-section Posters and Supporting Documents

MicroBooNE

- ν_μ CCQE-like measurement: **A. Papadopoulou, Poster 145, Poster Session 2**

- Updated ν_μ CC-inclusive measurement: MICROBOONE-NOTE-1069-PUB

- ν_μ NC1p measurement: **L. Ren, Poster 292, Poster Session 4** MICROBOONE-NOTE-1067-PUB

- ν_μ CCKaon selection: **A. Fiorentini, Poster 369, Poster Session 3** MICROBOONE-NOTE-1071-PUB

- MeV-scale Physics: **A. Bhat, Poster 4, Poster Session 4** MICROBOONE-NOTE-1076-PUB

- Interaction model and uncertainties: MICROBOONE-NOTE-1074-PUB

- Detector uncertainties: **L. Yates, Poster 176, Poster Session 1** MICROBOONE-NOTE-1075-PUB

ArgoNeuT

- $\nu_e + \bar{\nu}_e$ CC inclusive measurement: **R. Fitzpatrick, Poster 139, Poster Session 4**

- Improved limits on millicharged particles: **I. Lepetic, Poster 89, Poster Session 2**
MicroBooNE publications

- MicroBooNE collaboration, “Ionization Electron Signal Processing in Single Phase LAr TPCs II: Data/Simulation Comparison and Performance in MicroBooNE”, arXiv:1804.02583, JINST 13, P07007 (2018), Fermilab News article (07/09/18), DOE HEP Science Highlight (05/21/19)

- MicroBooNE collaboration, “Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC”, arXiv:1705.07341, JINST 12, P08003 (2017), Fermilab News article (07/05/17), DOE HEP Science Highlight (05/16/18)

cross-section specific
ARGONEUT PUBLICATIONS

- ArgoNeuT collaboration, “Measurement of ν_{μ} and $\bar{\nu}_{\mu}$ neutral current $\pi^0 \rightarrow \gamma \gamma$ production in the ArgoNeuT detector”, arXiv:1511.00941[hep-ex], Phys. Rev. D 96, 012006 (2017)

Very **stable detector operation**, smooth and **steady data taking**, efficient data acquisition

Total data collected: 1.56×10^{21} POT (protons on target)

Analyses shown today use subsets of data collected between December 2015 and June 2018
COSMIC RAY TAGGER (CRT)

CRT data from December 2017
ELECTRON-PHOTON DISCRIMINATION

MICROBOONE Preliminary NuMI POT=2.4e20

MicroBooNE ν_e Selection: presented at NuInt 2018

Current: with improved detector understanding
CC INCLUSIVE CROSS SECTION MEASUREMENT

Selection presented at Neutrino 2018
- Topological and optical information → reject background events from cosmic rays
- Energy deposition profile: select candidate muon

Largest ever sample of neutrino interactions on argon

Signal (CC-inclusive) events: 50.4%

Largest background: cosmic rays (29%) → directly measured with beam-off data

New since Neutrino 2018: double-differential cross section measurement
CC Inclusive double-differential measurement

-1.00 ≤ \(\cos(\theta^\text{reco}) < -0.50 \)

MicroBooNE 1.6e20 POT
- GENIE v2.12.2 + Emp. MEC
- GENIE v3.00.04 G1810a0211a
- GiBUU 2019
- NuWro 19.02.1
- Syst. Unc.
- Data (Stat. ⊕ Syst. Unc.)

0.00 ≤ \(\cos(\theta^\text{reco}) < 0.27 \)

0.27 ≤ \(\cos(\theta^\text{reco}) < 0.45 \)

0.45 ≤ \(\cos(\theta^\text{reco}) < 0.62 \)

0.62 ≤ \(\cos(\theta^\text{reco}) < 0.76 \)

0.76 ≤ \(\cos(\theta^\text{reco}) < 0.86 \)

0.86 ≤ \(\cos(\theta^\text{reco}) < 0.94 \)

0.94 ≤ \(\cos(\theta^\text{reco}) < 1.00 \)

CC Inclusive double-differential measurement

Tension reduced (smaller χ^2) for

- GENIE v3, NuWro, and GiBUU compared to GENIE v2

Large χ^2 driven by high-momentum, forward-going bins

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N_{bins}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIE v2+MEC</td>
<td>245.9/42</td>
</tr>
<tr>
<td>GENIE v3</td>
<td>108.8/42</td>
</tr>
<tr>
<td>GiBUU</td>
<td>172.9/42</td>
</tr>
<tr>
<td>NuWro</td>
<td>126.5/42</td>
</tr>
</tbody>
</table>

- $-1.00 \leq \cos(\theta^\text{reco}) < -0.50$
- $-0.50 \leq \cos(\theta^\text{reco}) < 0.00$
- $0.00 \leq \cos(\theta^\text{reco}) < 0.27$
- $0.45 \leq \cos(\theta^\text{reco}) < 0.62$
- $0.62 \leq \cos(\theta^\text{reco}) < 0.76$
- $0.76 \leq \cos(\theta^\text{reco}) < 0.86$
- $0.86 \leq \cos(\theta^\text{reco}) < 0.94$
- $0.94 \leq \cos(\theta^\text{reco}) < 1.00$

GENIE v2.12.2 + Emp. MEC

GENIE v3.00.04 G1810a0211a

GiBUU 2019

NuWro 19.02.1

Syst. Unc.) \oplus Data (Stat.

CC Inclusive double-differential measurement

-1.00 \leq \cos(\theta^\text{reco}_\mu) < -0.50

MicroBooNE 1.6e20 POT
- GENIE v2.12.2 + Emp. MEC
- GENIE v3.00.04 G18..., No RPA
- GENIE v3.00.04 G1810a0211a Syst. Unc.
- Data (Stat. + Syst. Unc.)

0.00 \leq \cos(\theta^\text{reco}_\mu) < 0.27

CC Inclusive double-differential measurement

Model

- $-1.00 \leq \cos(\theta_{\mu}^{\text{reco}}) < -0.50$
- $-0.50 \leq \cos(\theta_{\mu}^{\text{reco}}) < 0.00$
- $0.00 \leq \cos(\theta_{\mu}^{\text{reco}}) < 0.27$
- $0.27 \leq \cos(\theta_{\mu}^{\text{reco}}) < 0.45$
- $0.45 \leq \cos(\theta_{\mu}^{\text{reco}}) < 0.62$
- $0.62 \leq \cos(\theta_{\mu}^{\text{reco}}) < 0.76$
- $0.76 \leq \cos(\theta_{\mu}^{\text{reco}}) < 0.86$
- $0.86 \leq \cos(\theta_{\mu}^{\text{reco}}) < 0.94$
- $0.94 \leq \cos(\theta_{\mu}^{\text{reco}}) < 1.00$

MicroBooNE 1.6e20 POT
- GENIE v2.12.2 + Emp. MEC
- GENIE v3.00.04 G18,..., No RPA
- Data (Stat. & Syst. Unc.)

χ^2/N_{bins}

$\frac{d^2 \alpha}{dp_{\mu}^{\text{reco}} \cos(\theta_{\mu}^{\text{reco}})}$ in [10^{-30} GeV^2 cm^2]

GENIE v2+MEC

$245.9/42$

GENIE v3 (LFG, no RPA)

$121.6/42$

GENIE v4 (LFG, with RPA)

$108.8/42$

UPDATED CC-INCLUSIVE SELECTION: SYSTEMATIC UNCERTAINTIES

Flux-integrated cross section consistent with previous measurement

Drastically reduced systematic uncertainties

Source

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (Previous Analysis)</th>
<th>Uncertainty (This Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector response</td>
<td>16.2%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Cross section</td>
<td>3.9%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Flux</td>
<td>12.4%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Dirt background</td>
<td>10.9%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Cosmic ray background</td>
<td>4.2%</td>
<td>N/A</td>
</tr>
<tr>
<td>POT counting</td>
<td>2.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>CRT</td>
<td>N/A</td>
<td>1.7%</td>
</tr>
<tr>
<td>Total Sys. Error</td>
<td>23.8%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Statistics</td>
<td>1.4%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Total (Quadratic Sum)</td>
<td>23.8%</td>
<td>12.7%</td>
</tr>
</tbody>
</table>

PRL 123, 131801 (2019)

CRT better able to reject interactions in surrounding material (“dirt”) → reduced systematic uncertainty
Cosmic rejection:
- Topological and optical information
- Veto events with CRT hits when all tracks are contained
- Cut on CRT hit-reconstructed vertex z position if tracks are uncontained

Muon selection
- Longest track > 20 cm is muon candidate
- Topology must be track-like
- Energy deposition must be inconsistent with a proton
Good efficiency to select QuasiElastic, Meson Exchange Current, RESonant pion production, and Deep Inelastic Scattering interaction channels → truly inclusive selection

Efficiency limited at low neutrino energy/muon momentum due to muon candidate track length > 20 cm requirement
Updated CC-Inclusive Cross Section: Systematic Uncertainties

Improved detector understanding → drastically reduced systematic uncertainties from detector modeling
Efficiency is low for $p_\mu < 150$ MeV due to >20 cm track length requirement.

Main result includes all CC interactions in signal definition (no requirement on muon momentum).

As a check: re-extract cross section with signal requirement $p_\mu > 150$ MeV/c (note: statistical uncertainties only).
Efficiency is low for $p_\mu < 150$ MeV due to > 20 cm track length requirement

Main result includes all CC interactions in signal definition (no requirement on muon momentum)

As a check: re-extract cross section with signal requirement $p_\mu > 150$ MeV/c (note: statistical uncertainties only)
Low-energy photons appear more track like
→ low reconstruction efficiency
→ requiring that we reconstruct both π^0 photons limits statistics

Two-shower selection
→ validate π^0 hypothesis by invariant diphoton mass

Single shower selection
→ validate photon hypothesis
→ maximize statistics for cross section measurement
Select π^0 events by looking for **one** or **two** showers in addition to a candidate muon track.

One-shower sample (higher statistics): total π^0 cross-section measurement \(\rightarrow \) agreement with model predictions.

Two-shower sample: reconstruct π^0 mass, validate shower reconstruction.

CCQE-LIKE CROSS SECTION

First extraction of ν_μ-40Ar CCQE-like cross section using a surface LArTPC

Important channel for low-energy excess search (and other LArTPC oscillation analyses)

Signal: 1 muon (>100 MeV/c), 1 proton (300 MeV/c)

Selection:

- Two tracks
- Energy deposition consistent with one muon and one proton
- Tracks are not collinear
- Tracks are coplanar
- Low vertex activity
- Low transverse momentum

Candidate μ

Candidate p

18 cm Run 5412 Event 801, March 13th, 2016
CCQE CROSS SECTION: MODEL COMPARISONS

- **Nominal**: GENIE v2.12.2. Bodek-Ritchie Fermi Gas, Llewellyn-Smith CCQE model, empirical MEC model, Rein-Sehgal resonant and coherent scattering model, “hA” FSI model

- **hA2015**: GENIE v2.12.2 with a more recent “hA2015” FSI model

- **Alternative**: GENIE v2.12.10. Local Fermi Gas, Nieves CCQE model, Nieves MEC model, KLN-BS resonant and BS coherent scattering models, and hA2015 FSI model

- **v3.0.6**: GENIE v3.0.6. Same model configuration as Alternative model, with hA2018 FSI model
NCIP SELECTION

- Single **isolated track**
- Must be contained within fiducial volume
- Length 1.2 - 200 cm
- Must be **forward-going** \((\cos \theta > 0)\) w.r.t neutrino beam direction
- **Deposited energy profile** consistent with a proton
- Multi-class gradient-boosted decision tree used to **further reduce background from cosmic interactions**
NCIP CROSS SECTION MEASUREMENT

- Measure cross section for neutral-current single proton production

- Signal: 1 isolated proton

Selection:
42.1% efficiency, 29.8% purity

Largest backgrounds:
- Proton from charged-current interaction (other particles missed by reconstruction)
- Proton from non-1p neutral-current interaction (other particles missed by reconstruction)
CC KAON PRODUCTION SELECTION

- **CC kaon production**: rare process, few existing measurements, background for **proton decay** $p \rightarrow K^+\nu$ searches in DUNE

- Selection developed on simulation: look for K^+ track from neutrino interaction and μ^+ from K^+ decay

- 67.7% purity and 7% efficiency \rightarrow expect to select 12 candidate interactions in 1.3×10^{21} POT MicroBooNE data set

- Aim: cross section measurement and study of K^+ in LArTPC
CC KAON SELECTION

- Reject cosmic rays based on topology and optical information

- Must have one track with energy deposition consistent with a muon

- K^+ candidate selected based on energy deposition: consistent with a kaon and inconsistent with a proton

- Must have exactly one μ^+ candidate: must start within 5cm of end of kaon track, track length >30cm, energy deposition inconsistent with a proton
ARGONEUT ELECTRON NEUTRINO SELECTION

- Focus on reconstructing leading shower in neutrino interaction
- Reject events with a muon reconstructed in downstream MINOS detector
- Reject events with through-going muons
- Reconstructed shower must be forward-going: \(\cos(\theta) > 0.05 \) w.r.t. beam direction
- Shower must start within 2cm of reconstructed vertex
- Electron candidate selected based on topology and charge of entire candidate shower using a BDT: BDT score >0.9
ARGONEUT CHARGED PION PRODUCTION MEASUREMENT

- ArgoNEUT: CC1 π^\pm production Phys. Rev. D 98, 052002 (2018)

- Select two-track events: one matched to a track in MINOS (muon candidate)

- Select CC1 π^\pm events using dE/dx of pion candidate, event topology

- Overall purity 35.8% (ν), 55.7% ($\bar{\nu}$)

- 337 selected ν events (285 $\bar{\nu}$)

Figure from T. Yang, NuINT 2017
ARGONEUT CHARGED PION PRODUCTION MEASUREMENT

ν_μ CC π^\pm ArgoNeuT measurement

Kirsty Duffy
ARGONEUT CHARGED PION PRODUCTION MEASUREMENT

$\bar{\nu}_\mu$ CC π^\pm ArgoNeuT measurement

Resonant pion production model
- GENIE, NEUT: Rein-Sehgal
- NuWro: $\Delta(1232)$ resonance only

Nonresonant model
- NEUT: Rein-Sehgal
- GENIE, NuWro: Bodek-Yang above resonance region, extrapolate smoothly to converge with resonance model at lower W

FSI
- NEUT, NuWro: Salcedo-Oset cascade
- GENIE: effective cascade model
- GiBUU: quantum-kinetic transport theory

Paper conclusions

GiBUU: good agreement

NuWro, NEUT: similar, higher than measured cross section

GENIE: higher than other generators and measured cross sections (with reanalysis of bubble chamber data in *EPJC* (2016) 76: 474 points to GENIE’s nonresonant background prediction)

All predictions within 2σ of measurement, except GENIE $\bar{\nu}$ (3.3σ)
MICROBOONE ν_e CC INCLUSIVE SELECTION

ν_e selection efficiency: 9%, purity: 40%
MICROBOONE $\nu_e + \bar{\nu}_e$ MEASUREMENTS

- Select $\nu_e + \bar{\nu}_e$ CC inclusive interactions by looking for single shower
- Purity 40%, efficiency 9% $\rightarrow \sim 100$ events in 5×10^{19} POT
- Future plans:
 - $\nu_e + \bar{\nu}_e$ CC inclusive flux integrated cross section measurement
 - $\nu_e + \bar{\nu}_e$ CC inclusive differential cross-section measurement
 - Exclusive $\nu_e + \bar{\nu}_e$ CC $\mu\nu e\nu p$ differential cross-section measurement

MICROBOONE Preliminary
NuMI POT=2.4×10^20

- dE/dx over first 4cm of shower

Kirsty Duffy
Precise resolution of a LArTPC allows us to look in detail at particles produced in a neutrino interaction and measure number and kinematic distributions of charged tracks produced.
Both ArgoNeuT and MicroBooNE have demonstrated ability to reconstruct energy depositions from sub-MeV particles (ArgoNeuT: 300 keV, MicroBooNE: 100 keV)

Demonstration of low-threshold LArTPC capabilities: important for measurements of cross sections, especially solar neutrinos, supernova neutrinos, and neutrinos from μDAR

Measurement of Ar-39 decays in MicroBooNE

BSM physics search for millicharged particles in ArgoNeuT set leading limits (poster by I. Lepetic)

ArgoNeuT measurement: consistent with FLUKA prediction for photons coming from nuclear de-excitation and neutron re-interactions