## Latest Neutrino Oscillation Results from T2K



Patrick Dunne Imperial College London



On behalf of the T2K collaboration





### Overview

- Brief introduction to T2K
- What's new this year
- Preliminary analysis results with all data taken to date
- Future developments
- Conclusions

### What questions is T2K answering?

What are the precise values of  $\theta_{23}$ ,  $\theta_{13}$  and  $\Delta m_{32}^2$ ?

Is there significant CP violation in the neutrino sector?

What is the neutrino mass hierarchy?



### What questions is T2K answering?

What are the precise values of  $\theta_{23}$ ,  $\theta_{13}$  and  $\Delta m^2_{32}$ ?

Is there significant CP violation in the neutrino sector?

Theory implications

What is the neutrino mass hierarchy?

New source of CPV important in satisfying Sakharov conditions





# 

#### ~500 members, 69 institutes, 12 countries





### The T2K Experiment



### Neutrino oscillations at T2K



- Muon (anti)neutrino disappearance:
  - Location of dip determined by  $\Delta m_{32}^2$
  - Depth of dip determined by  $sin^2(2\theta_{23})$
- Electron (anti)neutrino appearance:
  - Leading term depends on  $sin^2(\theta_{23}),\,sin^2(\theta_{13})$  and  $\Delta m^2{}_{32}$
  - Sub-leading  $\delta_{\text{CP}}$  dependance (up to 45% on event rate)
    - $\delta_{CP} = \pi/2$ : fewer neutrinos, more anti-neutrinos
    - $\delta_{CP} = -\pi/2$ : more neutrinos, fewer anti-neutrinos
  - Matter effects give dependence on mass hierarchy (~10%)
- For 295km baseline first oscillation maximum is at 0.6 GeV, we use 2.5° off axis beam to focus flux at this energy







### J-PARC and the T2K Beamline

- T2K beamline uses fast extraction from J-PARC main ring with a beam pulse every 2.5 seconds
- Main ring power supply upgrade next year will allow pulse every 1.3 seconds (see Sakashitasan's talk from Monday)





### Data taken to date



- 515 kW stable operation achieved this year
- Has allowed an increase of 33% in v-mode data since 2018
- Total of 1.97x10<sup>21</sup> protons on target (POT) in v-mode and 1.63x10<sup>21</sup> in ν̄-mode



### Neutrino flux modelling

- Primary interaction in target simulated with FLUKA
- We reweight this MC to match NA61/SHINE data





**Imperial College** 

londor

- Previous analyses used NA61/SHINE data taken with a thin graphite target
  - Initial pion production reweighted in momentum and angle to match data then subsequent propagation through target was simulated
- New for this year we use NA61/SHINE data with a replica of T2K's target [EPJC 76, 84 (2016)]
  - MC spectrum now reweighted to match data in momentum, angle and target exit point
- Allows significant reduction in input flux uncertainty on SK rate from ~8% to ~5%



### Near detectors used in oscillation analysis

### **INGRID**

- On-axis detector
- Monitors beam direction and monitors stability



#### UA1 Magnet Yoke Downstream FCAL Solenoid Coil **Barrel ECAL** P0D ECAL

#### ND280

- Water and CH targets (2000 kg mass)
- Magnetized tracker to measure momentum and charge
- 2.5° off-axis (same as Super-K)
- Constrains cross-section and flux uncertainty model

Imperial College

### Super-K



- 50 kt water-Cherenkov detector
- 11,000 20" PMT inner detector
  - 40% photo-coverage
- 2,000 8" PMT outer detector
  - Cosmic veto/exiting particles
- Particle ID via Cherenkov ring pattern:
  - Muons produce sharp rings
  - Electrons scatter more
     → fuzzier rings
- No charge identification

14



### Neutrino interaction modelling

- At T2K's approximately 0.6 GeV neutrino energy, CCQE dominates plus significant multinucleon '2p2h' and resonant CC1 $\pi$
- Significant update to interaction model (NEUT 5.4.0):
  - CCQE nuclear initial state model moved from Relativistic Fermi gas [Phys.Rept. 3 261] plus RPA [Phys. Rev. C 83, 045501] to tuned spectral function [Nuc. Phys. A 579, 493]
  - Now treat removal energy as shift in lepton momentum, with smaller uncertainty from better understanding of removal energy in spectral function
  - Generally improved sophistication e.g. new 2p2h energy dependence uncertainty, correlated FSI errors between near and far detector and improved DIS uncertainties



### ND280 samples and selection

- ND280 constrains cross-section and flux uncertainties
  - Using twice as much data for this analysis:  $1.15 \times 10^{21}$  ( $8.34 \times 10^{20}$ )POT in v-mode ( $\bar{v}$ -mode)
- Separate samples for CH target FGD1 and CH/Water target FGD2
  - Allows constraint of both Carbon and Oxygen interactions

|                                      | FGD1         |           |          | FGD2         |                     |          |
|--------------------------------------|--------------|-----------|----------|--------------|---------------------|----------|
| $\nu$ events in neutrino mode        | CC0 <i>π</i> | CC1 $\pi$ | $CCN\pi$ | <b>CC0</b> π | CC1π                | $CCN\pi$ |
| $ar{ u}$ events in antineutrino mode | CC0π         | $CC1\pi$  | $CCN\pi$ | <b>CC0</b> π | CC1π                | $CCN\pi$ |
| $\nu$ events in antineutrino mode    | CC0 <i>π</i> | $CC1\pi$  | $CCN\pi$ | <b>CC0</b> π | <b>CC1</b> <i>π</i> | $CCN\pi$ |



### ND280 samples and selection

- ND280 constrains cross-section and flux uncertainties
  - Using twice as much data for this analysis:  $1.15 \times 10^{21}$  ( $8.34 \times 10^{20}$ )POT in v-mode ( $\bar{v}$ -mode)
- Separate samples for CH target FGD1 and CH/Water target FGD2
  - Allows constraint of both Carbon and Oxygen interactions
- Separate samples by reco. pion content (new this year in antineutrino mode):
  - $0\pi$ ,  $1\pi$  and  $N\pi$  samples enriched in CCQE, resonant and other interactions respectively

|                                      | FGD1         |          |      | FGD2         |          |          |
|--------------------------------------|--------------|----------|------|--------------|----------|----------|
| u events in neutrino mode            | $CC0\pi$     | $CC1\pi$ | CCNπ | CC0 <i>π</i> | $CC1\pi$ | $CCN\pi$ |
| $ar{ u}$ events in antineutrino mode | CC0 <i>π</i> | $CC1\pi$ | CCNπ | $CC0\pi$     | $CC1\pi$ | $CCN\pi$ |
| u events in antineutrino mode        | $CC0\pi$     | $CC1\pi$ | CCNπ | CC0 <i>π</i> | $CC1\pi$ | $CCN\pi$ |



17

### ND280 samples and selection

- ND280 constrains cross-section and flux uncertainties
  - Using twice as much data for this analysis:  $1.15 \times 10^{21}$  ( $8.34 \times 10^{20}$ )POT in v-mode ( $\bar{v}$ -mode)
- Separate samples for CH target FGD1 and CH/Water target FGD2
  - Allows constraint of both Carbon and Oxygen interactions
- Separate samples by reco. pion content (new this year in antineutrino mode):
  - $0\pi$ ,  $1\pi$  and  $N\pi$  samples enriched in CCQE, resonant and other interactions respectively

#### Samples to measure wrong-sign background

|                                      | FGD1         |          |          | FGD2         |          |          |
|--------------------------------------|--------------|----------|----------|--------------|----------|----------|
| $\nu$ events in neutrino mode        | $CC0\pi$     | $CC1\pi$ | $CCN\pi$ | CC0π         | $CC1\pi$ | $CCN\pi$ |
| $ar{ u}$ events in antineutrino mode | $CC0\pi$     | $CC1\pi$ | $CCN\pi$ | $CC0\pi$     | $CC1\pi$ | $CCN\pi$ |
| $\nu$ events in antineutrino mode    | CC0 <i>π</i> | $CC1\pi$ | CCNπ     | <b>CC0</b> π | $CC1\pi$ | $CCN\pi$ |



ondor

### ND fits

- ND fit constrains predicted number of events, which introduces large anticorrelations between flux and cross-section uncertainties
  - Pre-fit uncertainty on SK CC0 $\pi$  electron neutrino event rate goes from 13.0% to 4.7%



### ND fits

- ND fit constrains predicted number of events, which introduces large anticorrelations between flux and cross-section uncertainties
- Our model is a good fit to data (prior model p-value=74%)



### SK event samples

- Two samples with  $\mu$ -like rings (one in v-mode, one in  $\overline{v}$ -mode)
- Systematic uncertainty (red band) on rate is 3.0 (4.0)% in v-mode ( $\overline{v}$ -mode)



### SK event samples

- Three samples with e-like rings
  - Two with e-ring only in v-mode and  $\overline{v}$ -mode targeting CC0 $\pi$  events
  - One with Michel electron from  $\pi$  decay targeting CC1 $\pi$  events
- Uncertainty on rate is 4.7-5.9% in CC0 $\pi$  samples and 14.3% for CC1 $\pi$



Patrick Dunne (p.dunne12@imperial.ac.uk)

### SK event samples

 O(45%) change in electron-like event rate between  $\delta_{CP} = +\pi/2$  and  $\delta_{CP} = -\pi/2$ 



35

30

25

Tot. Pred.,  $\delta_{CP}$ =-  $\frac{\pi}{2}$ 

Tot. Pred.,  $\delta_{CP} = +\frac{\pi}{2}$ 

- Data

T2K Run 1-10 Preliminary

 $\nu_{\mu} \rightarrow \nu_{e}, \delta_{CP}=0$ 

 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \, \delta_{CP} = 0$ 

Background

### Robustness studies

- We test our uncertainty model by fitting data simulated with alternate interaction models and checking for parameter bias
- No significant biases seen on  $\theta_{23},\,\theta_{13}\, or\, \delta_{CP}$  from any of these alternate models
  - Small bias seen on  $\Delta m^2_{32}$  so an additional uncertainty of 1.4x10<sup>-5</sup> was added to account for this
- New nuclear removal energy systematic uncertainty has reduced previously large bias due to this effect significantly



 $\delta_{CP}$  vs  $\theta_{13}$ 

- We produce results with T2K data alone and using PDG2019 constraint on  $\theta_{13}$  from reactor experiments
- T2K only intervals are compatible with PDG2019  $\theta_{13}$  values at better than  $1\sigma$
- Results from here on are with reactor constraint



**Imperial College** 

### $1D \, \delta_{CP}$

- 35% of values excluded at 3σ marginalized across hierarchies
- CP conserving values (0, $\pi$ ) excluded at 90% but  $\pi$  not quite at 2 $\sigma$
- Largest  $\Delta \chi^2$  change seen in any of our robustness studies would cause left (right) edge of 90% interval to move by 0.073 (0.080)



### Comparison to previous result

- Data this year closer to PMNS prediction
  - See backup for details of effect of all changes made on results



### Comparison to previous result

- Data result gives tighter constraint than sensitivity as it did last year
- Consistent with expectation if have slight upwards statistical fluctuation



### Atmospheric sector

- Data shows preference for normal hierarchy and upper octant
- Slight preference for non-maximal  $sin^2\theta_{23}$



| Posterior probability      |                           |                           |       |  |  |
|----------------------------|---------------------------|---------------------------|-------|--|--|
|                            | $\sin^2\theta_{23} < 0.5$ | $\sin^2\theta_{23} > 0.5$ | Sum   |  |  |
| NH $(\Delta m_{32}^2 > 0)$ | 0.195                     | 0.613                     | 0.808 |  |  |
| IH $(\Delta m_{32}^2 < 0)$ | 0.034                     | 0.158                     | 0.192 |  |  |
| Sum                        | 0.229                     | 0.771                     | 1.000 |  |  |
|                            |                           |                           |       |  |  |

|                               | $\sin^2	heta_{23}$ | $\Delta m^2_{32}(	imes 10^{-3})\mathrm{eV}^2$ |
|-------------------------------|--------------------|-----------------------------------------------|
| 2D best fit                   | 0.546              | 2.49                                          |
| $68\%$ C.I. $(1\sigma)$ range | 0.50-0.57          | 2.408 - 2.548                                 |
| 90% C.I. range                | 0.460 - 0.587      | $-2.5962.452 \ \& \ 2.368 - 2.592$            |



### Future joint fits

- Experiments with different neutrino energies have different oscillation probabilities and systematic uncertainties
- Combined analysis of data allows degeneracies to be broken and maximises impact of data taken
   FNAL Users Meeting2019 NOvA Preliminary

30





ZK

### Future joint fits

- Experiments with different neutrino energies have different oscillation probabilities and systematic uncertainties
- Combined analysis of data allows degeneracies to be broken and maximises impact of data taken
- Agreements signed with NOvA and SK and work towards T2K+NOvA and T2K+SK atmospheric analyses is underway







### Future upgrades

- J-PARC Main Ring power supply upgrade already mentioned
  - 515kW->810kW by FY2022
- ND280 will be upgraded in 2022 with a new higher angular coverage TPC and 3D Super-FGD subdetector [arXiv:1901.03750v1]
  - Better hadron tagging and more similar phase space coverage to SK (S. Dolan's talk)
- SK-Gd loading for neutron tagging imminent (Y. Nakajima's talk)
- Oscillation analyses using our near detectors at other off-axis angles (WAGASCI/BabyMIND)









### Summary

- Results with 33% more v-mode data presented
- Significant upgrade has been made to the interaction and flux modeling used for this analysis
- Large range of values of  $\delta_{CP}$  around  $+\pi/2$  are excluded at 99.7%
- T2K has an exciting program of upgrades planned including higher beam power and improved near detectors



# Backup



### What changed from Run 1-9? Data

- Sequentially make each of the changes from OA2018 to OA20 one by one
  - B makes analysis changes described above e.g. flux model, xsec model
  - C adds update on  $\theta_{13}$  constraint from PDG2018 to PDG2019
  - D adds new calibration for SK that caused some events to migrate in and out of samples
  - E adds new run 10 data
- Largest change in  $\delta_{\text{CP}}$  comes from new data



Imperial College

### What changed from Run 1-9? Sensitivity

- Sequentially make each of the changes from OA2018 to OA20 one by one
  - B makes analysis changes described above e.g. flux model, xsec model
  - C adds update on  $\theta_{13}$  constraint from PDG2018 to PDG2019
  - D new calibration mentioned on previous slide doesn't affect MC
  - E adds new run 10 data
- Largest change in  $\delta_{CP}$  comes from new data


#### What changed from Run 1-9? Data

- Sequentially make each of the changes from OA2018 to OA20 one by one
  - B makes analysis changes described above e.g. flux model, xsec model
  - C adds update on  $\theta_{13}$  constraint from PDG2018 to PDG2019
  - D adds new calibration for SK that caused some events to migrate in and out of samples
  - E adds new run 10 data
- Largest change in sin<sup>2</sup>(θ<sub>23</sub>) comes from new data



Imperial College

#### What changed from Run 1-9? Sensitivity

- Sequentially make each of the changes from OA2018 to OA20 one by one
  - B makes analysis changes described above e.g. flux model, xsec model
  - C adds update on  $\theta_{13}$  constraint from PDG2018 to PDG2019
  - D new calibration mentioned on previous slide doesn't affect MC
  - E adds new run 10 data
- Largest change in sin<sup>2</sup>(θ<sub>23</sub>) comes from new data



Imperial College

#### What changed from Run 1-9? Data

- Sequentially make each of the changes from OA2018 to OA20 one by one
  - B makes analysis changes described above e.g. flux model, xsec model
  - C adds update on θ<sub>13</sub> constraint from PDG2018 to PDG2019
  - D new calibration mentioned on previous slide doesn't affect MC
  - E adds new run 10 data
- Largest change in Δm<sup>2</sup><sub>32</sub> comes from new xsec model (primarily better removal energy treatment)



Imperial College

#### What changed from Run 1-9? Data

- Sequentially make each of the changes from OA2018 to OA20 one by one
  - B makes analysis changes described above e.g. flux model, xsec model
  - C adds update on  $\theta_{13}$  constraint from PDG2018 to PDG2019
  - D adds new calibration for SK that caused some events to migrate in and out of samples
  - E adds new run 10 data
- Largest change in Δm<sup>2</sup><sub>32</sub> comes from new xsec model (primarily better removal energy treatment)



Imperial College

## Run 1-9 vs Run 1-10 2D Atmospheric Parameters - Data

- Sequentially make each of the changes from OA2018 to OA20 one by one
  - B makes analysis changes described above e.g. flux model, xsec model
  - C adds update on  $\theta_{13}$  constraint from PDG2018 to PDG2019
  - D adds new calibration for SK that caused some events to migrate in and out of samples
  - E adds new run 10 data
- Same conclusions as 1D



**Imperial College** 

# Definition of Oscilltion parameter set A used for sensitivity studies

Oscillation parameter set (Asimov A):

- 1.  $\sin^2 \theta_{12} = 0.307$
- 2.  $\sin^2 \theta_{23} = 0.528$
- 3.  $\sin^2 \theta_{13} = 0.0218$
- 4.  $\Delta m_{12}^2 = 7.53 \times 10^{-5}$
- 5.  $\Delta m_{23}^2 = 2.509 \times 10^{-3}$

6. 
$$\delta_{CP} = -1.601$$



#### Sensitivity plots without comparison overlays



Figure 7: Asimov sensitivity 2D confidence level contours in  $\Delta m_{32}^2$  vs.  $\sin^2 \theta_{23}$  for normal and inverted hierarchy for true values of the parameters corresponding to the Set A

**Imperial College** 

#### Sensitivity plots without comparison overlays



Figure 10: Asimov sensitivity 2D confidence level contours in  $\delta_{CP}$  vs.  $\sin^2 \theta_{13}$  for normal and inverted hierarchy for true values of the parameters corresponding to the Set A

Imperial College

#### Sensitivity plots without comparison overlays



Figure 12: Asimov sensitivity 1D  $\Delta \chi^2$  in  $\delta_{CP}$  for normal and inverted hierarchy for true values of the parameters corresponding to the Set A

**Imperial College** 

#### Systematic error breakdown

#### After ND fit

Table 20: Uncertainty on the number of event in each SK sample broken by error source after the BANFF fit. To obtain error rates comparable with the "Flux+Xsec (ND constrained)" presented by MaCh3 [22], square sum the "Flux+Xsec (ND constr)", " $\sigma(\nu_e)$ ,  $\sigma(\bar{\nu}_e)$ ", "NC  $\gamma$ ".

|                                             | 1F  | <b>ξ</b> μ |     |     | $1 \mathrm{R}e$ |         |
|---------------------------------------------|-----|------------|-----|-----|-----------------|---------|
| Error source                                | FHC | RHC        | FHC | RHC | FHC CC1 $\pi^+$ | FHC/RHC |
| Flux                                        | 2.9 | 2.8        | 2.8 | 2.9 | 2.8             | 1.4     |
| Xsec (ND constr)                            | 3.1 | 3.0        | 3.2 | 3.1 | 4.2             | 1.5     |
| Flux+Xsec (ND constr)                       | 2.1 | 2.3        | 2.0 | 2.3 | 4.1             | 1.7     |
| 2p2h Edep                                   | 0.4 | 0.4        | 0.2 | 0.2 | 0.0             | 0.2     |
| $\mathrm{BG}_A^{\mathrm{RES}}$ low- $p_\pi$ | 0.4 | 2.5        | 0.1 | 2.2 | 0.1             | 2.1     |
| $\sigma( u_e),\sigma(ar{ u}_e)$             | 0.0 | 0.0        | 2.6 | 1.5 | 2.7             | 3.0     |
| NC $\gamma$                                 | 0.0 | 0.0        | 1.4 | 2.4 | 0.0             | 1.0     |
| NC Other                                    | 0.2 | 0.2        | 0.2 | 0.4 | 0.8             | 0.2     |
| SK                                          | 2.1 | 1.9        | 3.1 | 3.9 | 13.4            | 1.2     |
| Total                                       | 3.0 | 4.0        | 4.7 | 5.9 | 14.3            | 4.3     |

#### Before ND fit

Table 21: Uncertainty on the number of event in each SK sample broken by error source before the BANFF fit.

|                     | 1F                | Rμ    |       |       | $1 \mathrm{R}e$ |         |
|---------------------|-------------------|-------|-------|-------|-----------------|---------|
| Error source        | FHC               | RHC   | FHC   | RHC   | FHC CC1 $\pi^+$ | FHC/RHC |
| Flux                | $\  5.1\%$        | 4.7%  | 4.8%  | 4.7%  | 4.9%            | 2.7%    |
| Cross-section (all) | 10.1%             | 10.1% | 11.9% | 10.3% | 12.0%           | 10.4%   |
| SK+SI+PN            | $\parallel 2.9\%$ | 2.5%  | 3.3%  | 4.4%  | 13.4%           | 1.4%    |
| Total               | ∥ 11.1%           | 11.3% | 13.0% | 12.1% | 18.7%           | 10.7%   |

Imperial College London

### Parameter best fit and credible intervals T2K only

|                               | $\sin^2	heta_{23}$ | $\Delta m^2_{32}(	imes 10^{-3})\mathrm{eV}^2$ |
|-------------------------------|--------------------|-----------------------------------------------|
| 2D best fit                   | 0.488              | 2.46                                          |
| $68\%$ C.I. $(1\sigma)$ range | 0.470 - 0.550      | $2.416 - 2.544 \ \& \ -2.5682.496$            |
| 90% C.I. range                | 0.447 - 0.580      | 2.376 - 2.584 & -2.6162.436                   |

Table 8: Best-fit values and 68% and 90% 1D credible interval ranges for disappearance parameters from the T2K data only fit. The 2D best-fit values are taken from the mode of the 2D marginal posterior distributions in  $\sin^2 \theta_{23} - \Delta m_{32}^2$ , and the 1D 68% and 90% credible intervals correspond to the 1  $\sigma$  and 90% central area of the marginalised posterior distributions, correspondingly.

|                                  | $\sin^2	heta_{13}$ | $\delta_{CP}$                     |
|----------------------------------|--------------------|-----------------------------------|
| 2D best fit                      | 0.0244             | -2.094                            |
| $68\%$ C.I. $(1\sigma)$ range    | 0.0223 - 0.0308    | -2.7960.723                       |
| 90% C.I. range                   | 0.0203 - 0.0335    | $-\pi0.126 \& 2.890 - \pi$        |
| 95.4% (2<br>$\sigma)$ C.I. range | 0.0195 - 0.0348    | $-\pi - 0.220 \& 2.545 - \pi$     |
| 99% C.I. range                   | 0.0178 - 0.0350    | $-\pi - 0.880 \ \& \ 1.885 - \pi$ |
| 99.7% $(\sigma)$ C.I. range      | 0.0165 - 0.0350    | $-\pi - 1.131 \& 1.571 - \pi$     |

Table 9: Best-fit values and 68% and 90% 1D credible interval ranges for appearance parameters from the T2K data only fit. The 2D best-fit values are taken from the mode of the 2D marginal posterior distributions in  $\sin^2 \theta_{13} - \delta_{CP}$ , and the 1D 68% and 90% credible intervals correspond to the 1  $\sigma$  and 90% central area of the marginalised posterior distributions, correspondingly.



#### Parameter best fit and credible intervals T2K+reactor

|                               | $\sin^2	heta_{23}$ | $\Delta m^2_{32}(	imes 10^{-3}) \mathrm{eV}^2$ |
|-------------------------------|--------------------|------------------------------------------------|
| 2D best fit                   | 0.546              | 2.49                                           |
| $68\%$ C.I. $(1\sigma)$ range | 0.50-0.57          | -3.0043.000 & 2.408 - 2.548                    |
| 90% C.I. range                | 0.460 - 0.587      | $-2.5962.452 \ \& \ 2.368 - 2.592$             |

Table 11: Best-fit values and 68% and 90% 1D credible interval ranges for disappearance parameters from the data fit with reactor constraint. The 2D best-fit values are taken from the mode of the 2D marginal posterior distributions in  $\sin^2 \theta_{23} - \Delta m_{32}^2$ , and the 1D 68% and 90% credible intervals correspond to the 1  $\sigma$  and 90% central area of the marginalised posterior distributions, correspondingly.

|                               | $\sin^2	heta_{13}$ | $\delta_{CP}$                     |
|-------------------------------|--------------------|-----------------------------------|
| 2D best fit                   | 0.0220             | -1.967                            |
| $68\%$ C.I. $(1\sigma)$ range | 0.0212 - 0.0226    | -2.5451.037                       |
| 90% C.I. range                | 0.0208 - 0.0231    | -2.9220.565                       |
| 95.4% C.I. range              | 0.0206 - 0.0234    | $-\pi0.346$                       |
| 99% C.I. range                | 0.0201 - 0.0237    | $-\pi - 0.063 \ \& \ 2.827 - \pi$ |
| 99.7% C.I. range              | 0.0198 - 0.0240    | $-\pi-0.346\ \&\ 2.545-\pi$       |

Table 12: Best-fit values and 68% and 90% 1D credible interval ranges for appearance parameters from the data fit with reactor constraint. The 2D best-fit values are taken from the mode of the 2D marginal posterior distributions in  $\sin^2 \theta_{13} - \delta_{CP}$ , and the 1D 68% and 90% credible intervals correspond to the 1  $\sigma$  and 90% central area of the marginalised posterior distributions, correspondingly.

> Imperial College London

#### Flux composition of beam nu vs nubar





Patrick Dunne (p.dunne12@imperial.ac.uk)

#### $\theta_{23}$ - $\delta_{CP}$ plots – data with reactor constraint



Imperial College London

#### T2K only results without reactor constraint





#### Beam stability plot



Patrick Dunne (p.dunne12@imperial.ac.uk)

#### P-values for SK samples from MaCh3

| Sample / p-value | Shape-based | Total Rate-based |
|------------------|-------------|------------------|
| FHC $1R\mu$      | 0.48        | 0.18             |
| FHC 1Re          | 0.19        | 0.49             |
| RHC $1R\mu$      | 0.85        | 0.74             |
| RHC 1Re          | 0.61        | 0.39             |
| FHC 1Re1d.e.     | 0.86        | 0.22             |
| Total            | 0.73        | 0.30             |

Table 7: Breakdown of goodness-of-fit p-values values, quoted separately for bin-by-bin (Shape-based) and total rate (Total Rate-based) based  $\chi^2$  calculation, used as a test for the compatibility between the best-fit model and the data, using T2K data fit with reactor constraint.

**Imperial College** 

#### Removal energy robustness study

• Very small bias seen with new removal energy uncertainty parametrisation



**Imperial College** 

#### $\delta_{CP}$ robustness study details

- Test impact of alternate model on  $\delta_{CP}$  result by subtracting change in  $\Delta \chi^2$ seen in alternate model study from data  $\Delta \chi^2$  distribution
- We report the largest shift in either direction on both left and right edges of 90% interval



Londor



nb: FHC is v-mode RHC is  $\bar{\nu}$ -mode

College

## All ND data samples pre- and post-fit FGD1 $v_{\mu}$ CCother



Pre-fit

Post-fit

Patrick Dunne (p.dunne12@imperial.



nb: FHC is v-mode RHC is  $\bar{v}$ -mode

#### All ND data samples pre- and post-fit



nb: FHC is v-mode RHC is  $\bar{v}$ -mode

#### All ND data samples pre- and post-fit





Post-fit

0

Events/(100 MeV/c)

0

500

1000

FGD2 anti- $v_{\mu}$  CC1 $\pi$ 

1500

2000

 $\mathbf{p}_{\mu}$  (MeV/c)

🗕 🛨 🗕 🛨

2500

0

200

200

400

600

800

1000

FGD2 anti-v<sub>u</sub> CCOther

1200 1400

Events/(100 MeV/c) 30 CCQE 50 CC 2p2h CC Res 1n 25 CC Coh 17 v CC Other V NC modes 20 v modes 30 15 20 10 10 5 0 0 2000 500 1000 1500 2500  $\mathbf{p}_{\mu}$  (MeV/c) (e) FGD2 RHC  $\bar{\nu_{\mu}} 1\pi$ 

Patrick Dunne (p.dunne12@impe

(f) FGD2 RHC  $\bar{\nu_{\mu}}$  Other

1000

1200

800

600

1600 1800 2000

 $p_{\mu}^{(MeV/c)}$ 

🗕 Data

**∇ CCQE** 

1400 1600 1800 2000

 $\mathbf{p}_{\mu}$  (MeV/c)

**n** 

nb: FHC is v-mode RHC is  $\bar{\nu}$ -mode

ial College



nb: FHC is v-mode RHC is  $\bar{\nu}$ -mode



nb: FHC is v-mode RHC is  $\bar{v}$ -mode

#### All ND data samples pre- and post-fit FGD2 v<sub>µ</sub>Bkg CC1π in AntiNu Mode FGD2 v<sub>µ</sub>Bkg CCOther in AntiNu Mode



# ND280 angular efficiency before and after upgrade





Patrick Dunne (p.dunne12@imperial.ac.uk)

### Flux old vs new component contributions and values



Patrick Dunne (p.dunne12@imperial.ac.uk)

#### Pre-vs post-fit xsec parameter values



Patrick Dunne (p.dunne12@imperial.ac.uk)

Imperial College

#### Pre-vs post-fit xsec parameter values



Patrick Dunne (p.dunne12@imperial.ac.uk)

Imperial College London

#### Pre-vs post-fit xsec parameter values







#### **Tuned Spectral Function Model**

- The starting point for our CCQE interaction model is the Benhar Spectral Function (SF) for Carbon and Oxygen (Nucl. Phys. A, 579, 493-517)
- Numerous CC0π cross section measurements have shown a need for a suppression at low Q<sup>2</sup> (e.g. Phys. Rev. D 101, 112004; Phys. Rev. D, 99, 012004)
  - We introduce parameters allowing *ad-hoc* low  $Q^2$  suppression on the SF predictions with no prior constraint
  - The impact of giving this suppression to the CCQE rather than other processes is tested within our robustness studies
  - The central values for the parameters for supplementary studies is chosen based on a tune to global cross-section data
- A large part of the SF is built from exclusive electron scattering (e,e'p) data where the target nucleon is a proton
  - To account for instead having a target *neutron* in neutrino interactions we shift the position of shells in the SF in accordance with theoretical mean-field shell model predictions
  - Parameters to separately shift the shells are included (separate parameters for protons and neutrons on Carbon and Oxygen) with prior uncertainties derived mostly from e,e'p data





### How to do a neutrino oscillation analysis

- Like any particle physics experiment make prediction and compare to data
- Need to ensure experiment can constrain non-oscillation elements of model
  - Accurate modelling of flux, cross-section and detector model uncertainties key to preventing bias
- T2K has several fitter groups who implement same model and cross-check
  - Analysis differences between groups (e.g. simultaneous ND-FD fit vs sequential) test robustness of conclusions



#### SK-Gd

# SK Gadolinium



- SK Gadolinium project
  - enhance neutron detection improve low-energy ve detection (non-T2K goal).
  - may provide wrong-sign background constraint in  $\overline{\nu}_e$ 
    - more data samples.
- Leak repairs to SK tank finished in 2019.
- Load Gd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> in stages up to 0.2%.
- Loading to start in 2020.




# SK-Gd

#### SK-Gd

#### T1 Schedule w/ 2.2 m water draining ver. 2019.12.27



First attempt to dissolve Gd salt stopped because of COVID-19

### Statistics

• Three analyses all cross-checked against each other

|                                                | Analysis 1                                              | Analysis 2                                                                                    | Analysis 3                                                      |
|------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Kinematic variables<br>for 1Re sample at<br>SK | Erec-θ                                                  | p₀-θ                                                                                          | Erec-θ                                                          |
| Likelihood                                     | Binned Poisson<br>Likelihood Ratio                      | Binned Poisson<br>Likelihood Ratio                                                            | Binned Poisson<br>Likelihood Ratio                              |
| Likelihood<br>Optimization                     | Markov Chain Monte<br>Carlo                             | Gradient descent and grid scan                                                                | Gradient descent and grid scan                                  |
| Contours/limits<br>produced                    | Bayesian Credible<br>Intervals                          | Frequentist Confidence Intervals<br>with Feldman-Cousins<br>(credible intervals supplemental) | Frequentist<br>Confidence Intervals<br>with Feldman-<br>Cousins |
| Mass Hierarchy<br>Analysis                     | Bayes factor from<br>fraction of MCMC<br>points in each | Bayes factor from likelihood integration                                                      | Frequentist p-value from generated PDF                          |
| Near Detector<br>Information                   | Simultaneous joint fit                                  | Constraint Matrix                                                                             | Constraint Matrix                                               |
| Systematics<br>Handling                        | Simultaneous fit then marginalization                   | Marginalization during<br>fit                                                                 | Marginalization during<br>fit                                   |

Imperial College London

# WAGASCI/Baby MIND/NINJA

- WAGASCI uses water filled plastic scintillator lattice to measure H<sub>2</sub>O crosssection
- BabyMIND downstream is a magnetized tracking detector for muons giving charge identification and momentum measurement
- NINJA is a moveable emulsion detector with very low momentum threshold to study neutrino-water interactions
- Located on B2 level of ND280 giving access to a more 'on-axis' slightly higher energy flux than SK





### Detecting neutrinos



- Use charged-current neutrino-nucleus interactions
- Detect energetic final state lepton
  - Gives kinematic information and flavour ID
- Oscillation effects vary with  $E_{\nu}$ 
  - Recoil hadrons often below detection threshold and nuclear effects important so hard to reconstruct
- Construct variable as close to true energy as possible
- Assume quasi-elastic scattering from single bound nucleon (CCQE):  $E_n^{rec} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_l}{E_n^2}$

$$2(m_n - E_b - E_l + p_l \cos\theta_l)$$

• Only uses particle masses, lepton kinematics and nuclear model

76

**Imperial College** 

Londo

#### Making a Neutrino Beam



# Neutrino beam



Х

- 3 Horns system with 250 kA current sinusoidal ~3ms pulse.
- Forward (neutrino enhanced) and Reversed (anti-neutrino enhanced) modes.
- The beam is slightly tilted towards the earth.

planned upgrade to reach 320kA

 $\rightarrow$  +~20% v flux



«. π,K-

ND280 to SuperK 2.5° Concerning to SuperK Target Station



NA61-SHINE





NA61/Shine measures the production of pions and kaons as function of the momentum and angle for protons interacting with carbon.

Hadro production experiments carried in equal conditions to v beam experiments are critical!

Latest measurements made with exact T2K replica target

Patrick Dunne (p.dunr

# Beam monitors



Proton beam monitors are essential for protecting beam-line equipment, as well as for understanding and predicting the **neutrino flux** 



Patrick Dunne (p.dunr

# Muon monitors J2K







- Monitors the beam direction from the μ produced in π decays.
- Embedded in the beam dump samples the high energy muons.
- ionisation chambers and silicon PIN diodes.
- High irradiation area:  $\sim 10^{14}$  electrons/cm/month at 750 KW.



# T2K analyses

- T2K has several separate analysis frameworks: some fit near detector first and propagate, others do joint fit
- Joint fit analysis is Bayesian, one of separate fitters is frequentist and the other is a mix
- All three able to construct frequentist confidence intervals for comparisons
  - Very good agreement is seen (this is from previous result for illustration)



(high values mean more likely this is the "correct"

parameter value)





# Dealing with nuisance parameters

- Likelihood has >750 parameters but want plots in ≤2 of them at once
- Two main options:
  - Profiling: Pick values of nuisance params that maximise likelihood for each set of values of parameters of interest
  - Marginalisation: Integrate over nuisance parameters
- T2K choose marginalisation to take into account non-Gaussian shape of distributions
- Also finding maximum likelihood point for given osc par values is hard in 750 dimensions





# MCMC vs grid search

- Bayesian analysis samples likelihood space with Markov Chain MC
- Rule for stepping in parameter space ensures distribution of parameter values proportional to marginalised posterior probability
- Generate large number of 'steps' with a vector of values of each parameter for each step
- Create contours using highest posterior density



# MCMC vs grid search

- Other analyses use random throws of nuisance parameters from covariance matrices to marginalise
- Then do a grid search in 1D/2D calculating average  $\Delta \chi^2$  across ensemble of marginalisation throws
- Use Feldman-Cousins to find critical  $\Delta \chi^2$  values for  $\delta_{CP}$





# Robustness check details

- Check robustness of results to neutrino interaction model by using our model to fit ``fake data" generated with other model assumptions
- Compare fit to fake data to nominal model fit
- If getting the interaction model wrong leads to significantly different constraints: further investigation
- Some examples here from previous analyses where we initially saw biases on  $sin^2\theta_{23}$  and  $\Delta m^2_{23}$ 
  - Caused because ND fit to fake data propagated to SK (purple) doesn't reproduce SK fake data (blue)
  - Previously had a heuristic dial to account for this misfitting but inflated error by a large amount
  - This year we have Eb dial which removed this bias without overestimating uncertainty
- No significant biases seen on  $\delta_{CP}$

