New Oscillation Results from the NOvA Experiment

Alex Himmel, Fermilab for the NOvA Collaboration

July 2nd, 2020
The NOvA Experiment

- Long-baseline neutrino oscillation experiment
- NuMI beam: ν_μ or $\bar{\nu}_\mu$
- 2 functionally identical, tracking calorimeter detectors
 - Near: 300 T underground
 - Far: 14 kT on the surface
 - Placed off-axis to produce a narrow-band spectrum
- 810 km baseline
 - Longest baseline of current experiments.

Take a tour in VR!
NOvA Physics

• Atmospheric sector oscillations:
 – $\Delta m^2_{32}, \sin^2\theta_{23}, \delta_{CP}$

• Key open questions in oscillations:
 – Is the neutrino mass hierarchy normal or inverted?
 – Is CP violated in the neutrino sector?
 – Is θ_{23} mixing maximal?
 • ν_μ-ν_τ symmetry
 • If not, what is the octant of θ_{23}?
NOvA Physics

• Atmospheric sector oscillations:
 – $\Delta m^2_{32}, \sin^2 \theta_{23}, \delta_{CP}$

• Key open questions in oscillations:
 – Is the neutrino mass hierarchy normal or inverted?
 – Is CP violated in the neutrino sector?
 – Is θ_{23} mixing maximal?
 • $\nu_\mu-\nu_\tau$ symmetry
 • If not, what is the octant of θ_{23}?

• Disentangle by measuring...
 – disappearance $P(\nu_\mu \rightarrow \nu_\mu)$ and appearance $P(\nu_\mu \rightarrow \nu_e)$
 – in neutrinos and antineutrinos
 – over long baselines to separate hierarchy and δ effects.
NOvA Physics Beyond 3-flavor

Neutrino 2020 Talks

- Cross-section measurements with NOvA
 - Linda Cremonesi

Papers since NEUTRINO 2018

- Observation of seasonal variation of atmospheric multiple-muon events in the NOvA Near Detector, Phys.Rev.D 99 (2019) 12, 122004
- Measurement of Neutrino-Induced Neutral-Current Coherent π^0 Production in the NOvA Near Detector, Accepted to PRD, arXiv: 1902.00558 [hep-ex]

Neutrino 2020 Posters

- 358. Astrophysics with NOvA, Matt Strait & Oleg Samoylov
- 550. Galactic Supernova Neutrinos, Justin Vasel, Andrey Sheshukov, Alec Habig
- 555. Event Selection and Systematics, Adam Lister & Anne Norrick
- 442. Sterile Neutrino Search via NC Disappearance with Antineutrinos, Mike Wallbank
- 431. Poisson Likelihood Covariance Technique for 3+1 Sterile Searches, Jeremy Hewes
- 541. Neutrino Tridents, Erica Smith & Kelli Michaels
- 398. Inclusive CC ν_μ, Connor Johnson
- 505. Inclusive CC ν_e, Matt Judah
- 228. CC $\nu_\mu \pi^\pm$, Cathal Sweeney
Typically ~670 kW

Peaks >750 kW

50% more neutrino beam data in this analysis

Working towards 900+ kW
 - Upgrading the NuMI beamline components
 - Allows gradual increase in power up to 850 kW with faster cycle times
 - Early PIP-II upgrades allow 900+ kW
The NOvA Detectors

- Segmented liquid scintillator detectors provide 3D tracking and calorimetry
- Optimized for electron showers: ~6 samples per X_0 and ~60% active

![Zoom of a ν_e candidate in the FD](image)

- Good time resolution (few ns) and spatial resolution (few cm)
 - Allows clear separation of individual interactions

![Pile-up during a 10 μs ND beam spill](image)
Observe flavor change as a function of energy over a long distance while mitigating uncertainties on neutrino flux, cross sections, and detector response.
Observe *flavor* change as a function of *energy* over a long distance while *mitigating uncertainties* on neutrino flux, cross sections, and detector response.
Observe *flavor* change as a function of *energy* over a long distance while mitigating uncertainties on neutrino flux, cross sections, and detector response.
Neutrino Interaction Model

• Constantly evolving understanding of ν interactions.
• Upgrade to GENIE 3.0.6 → freedom to choose models
• Chose the most “theory-driven” set of models plus GENIE’s re-tune of some parameters*.
• Some custom tuning is still required.
 – Substantially less than was needed with GENIE 2.12.2, which required tweaks to most models.

<table>
<thead>
<tr>
<th>Process</th>
<th>Model</th>
<th>Reference</th>
</tr>
</thead>
</table>

* We call our tune N1810j_0211a, and it is built by starting with G1810b_0211a and substituting the Z-expansion form factor for the dipole one. This combination was not available in the 3.0.6 release, but it may be available in future versions.

Neutrino Interaction Model

- 2p2h \textit{or} Meson Exchange Current \textit{or} Multi-nucleon Interactions:
 - Disagreement of models with multiple experiments well-known
 - Tuned to \textbf{NOvA ND data} with two 2D gaussians in $q_0-|\vec{q}|$ space.
 - Generous systematics covering normalization and kinematic shape

- Final State Interactions
 - Used \textbf{external \pi-scattering data} primarily to set uncertainties
 - Required adjusting central value, change in overall xsec was small.

\begin{itemize}
 \item \textbf{NOvA Preliminary}
 \item \textbf{Neutrino Beam $\nu_\mu + \bar{\nu}_\mu$ CC Selection}
 \item ND Data
 \item MEC
 \item QE
 \item RES
 \item DIS
 \item Other
\end{itemize}

67. Cross section adjustments for 2p2h
 - Maria Martinez Casales

352. Central value tuning and uncertainties for the hN FSI model in GENIE 3
 - Michael Dolce, Jeremy Wolcott, Hugh Gallagher
Selecting and Identifying Neutrinos

• Identify neutrino flavor using a convolutional neural network.
 – A deep-learning technique from computer vision

• Before main PID:
 – Events are contained in the detector
 – CC ν_μ require a well-reconstructed μ track
 – Reject cosmic rays with BDTs

• Performance relative to preselection:
 – ν_μ: \sim90% efficient, 99% bkg. rejection
 – ν_e: \sim80% efficient, 80% bkg. rejection

• Validate performance against data-driven control samples in both detectors.

Posters

182. Improvements and New Applications of Machine Learning
 – Ashley Back & Micah Groh

120. Data-Driven cross checks for ν_e selection efficiency in NOvA
 – Anna Hall & Liudmila Kolupaeva

258. Data-Driven Wrong-Sign Background Estimates
 – Abhilash Yallappa Dombara

First CNN in HEP result: A. Aurisano, et al. JINST 11 (2016) 09, P09001
Energy Reconstruction

\[E_{\text{had}} \text{ from calorimetry, } \sim 30\% \text{ resolution} \]

\[E_\mu \text{ from length, } \sim 4\% \text{ resolution} \]

\[E_{\text{EM}} \text{ from calorimetry, } \sim 10\% \text{ resolution} \]
Near Detector ν_μ Spectra

NOvA Preliminary

- Band around the MC shows the large impact of flux and cross-section uncertainties in only a single detector.
- We use this sample to predict both ν_μ and ν_e signal spectra at the Far Detector.
 - Appearing ν_e's are still ν_μ's at the ND
Near Detector ν_e-like Spectra

- The ND ν_e-like spectrum contains the **background** to the appearing ν_e's at the FD.
- Largest background is the irreducible $\nu_e/\bar{\nu}_e$ flux component.
 - 50% in neutrino-mode
 - 71% in antineutrino mode
- We use this sample to predict the background to ν_e appearance.
ν_μ sample

- Sensitivity depends primarily on the shape of the energy spectrum.
- Bin by *energy resolution* → bin by hadronic energy fraction

ν_e sample

- Sensitivity depends primarily on separating signal from background.
- Bin by *purity* → bins of low & high PID
- Peripheral sample:
 - Captures high-PID events which might not be contained close to detector edges.
 - No energy binning.
Extrapolating from Near to Far Detector

- Observe data-MC differences at the ND, use them to modify the FD MC.
 - Extrapolation performed in the analysis binning of energy + (resolution or PID).
- Significantly reduces the impact of uncertainties correlated between detectors
 - Especially effective at rate effects like the flux (7% → 0.3%).
Extrapolating Kinematics

- Containment limits the range of lepton angles more in the Near Detector than in the Far.
 - The ND is 1/5 the size of the FD.

- Mitigate by extrapolating in bins of lepton transverse momentum, p_t
 - Transverse to the ν-beam direction \approx the central axis of the detectors

- Split the ND sample into 3 bins of p_ν extrapolate each separately to the FD.
 - Effectively “rebalances” the kinematics to better match between the detectors.
 - Re-sum the p_t bins before fitting.
Increased robustness also leads to a 30% reduction in cross section uncertainties.

- Reduces the size of the systematics most likely to contain “unknown unknowns”
- Slightly increase the sensitivity to well-understood systematics on lepton reconstruction.

Overall systematic reduction is 5-10%,
- The largest systematics come from the detector energy scale.
• Simultaneous fit of all samples, reactor-constrained $\sin^2 2\theta_{13} = 0.085 \pm 0.003$.

• We perform a frequentist analysis and use the Feldman-Cousins method to ensure proper coverage in all contours and intervals.
ν_μ and $\bar{\nu}_\mu$ Data at the Far Detector

NOvA Preliminary

- **ν_μ Data**
 - FD data
 - 2020 Best-fit
 - 1-\sigma syst. range
 - Background

- **$\bar{\nu}_\mu$ Data**
 - FD data
 - 2020 Best-fit
 - 1-\sigma syst. range
 - Background

211 events, 8.2 background

105 events, 2.1 background
ν_e and $\bar{\nu}_e$ Data at the Far Detector

Table: Total Observed and Predicted Events

<table>
<thead>
<tr>
<th></th>
<th>Total Observed</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e-beam</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>$\bar{\nu}_e$-beam</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Total Prediction</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e-beam Total</td>
<td>85.8</td>
<td>52-110</td>
</tr>
<tr>
<td>Wrong-sign</td>
<td>1.0</td>
<td>0.6-1.7</td>
</tr>
<tr>
<td>Beam Bkgd.</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td>Cosmic Bkgd.</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Total Bkgd.</td>
<td>26.8</td>
<td>26-28</td>
</tr>
</tbody>
</table>

$\bar{\nu}_e$-beam Total	33.2	25-45
Wrong-sign	2.3	1.0-3.2
Beam Bkgd.	10.2	
Cosmic Bkgd.	1.6	
Total Bkgd.	14.0	13-15

>4σ evidence of $\bar{\nu}_e$ appearance
Precision measurements of Δm^2_{32} (3%) and $\sin^2 \theta_{23}$ (6%).

Best Fit
- Normal hierarchy
- $\Delta m^2_{32} = (2.41 \pm 0.07) \times 10^{-3}$ eV2
- $\sin^2 \theta_{23} = 0.57^{+0.04}_{-0.03}$

Prefer non-maximal mixing by 1.1\sigma.
Best Fit
Normal hierarchy
\[\Delta m^2_{32} = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2 \]
\[\sin^2 \theta_{23} = 0.57^{+0.04}_{-0.03} \]
\[\delta = 0.82 \pi \]
• We see no strong asymmetry in the rates of appearance of ν_e and $\bar{\nu}_e$
We see no strong asymmetry in the rates of appearance of ν_e and $\bar{\nu}_e$

Disfavor hierarchy-δ combinations which would produce that asymmetry

Exclude IH $\delta = \pi/2$ at >3σ
Disfavor NH $\delta = 3\pi/2$ at ~2σ
• We see no strong asymmetry in the rates of appearance of ν_e and $\bar{\nu}_e$
• Disfavor hierarchy-δ combinations which would produce that asymmetry
• Consistent with hierarchy-octant-δ combinations which include some “cancellation.”
 – Since such options exist for both octants and hierarchies, results show no strong preferences.

Exclude IH $\delta = \pi/2$ at $>3\sigma$
Disfavor NH $\delta = 3\pi/2$ at $\sim 2\sigma$

Prefer...
Normal Hierarchy at 1.0σ
Upper Octant at 1.2σ
Comparison to T2K

- Clear tension with T2K’s preferred region.
- Quantifying consistency requires a joint fit of the data from the two experiments, which is already in the works.
 - Semi-annual workshops, regular joint group meetings, and a signed joint agreement.
Comparison to T2K

T2K, Nature 580: ■ BF ≤ 90% CL - - - ≤ 68% CL
NOvA: ★ BF ≤ 90% CL - - - ≤ 68% CL

NOvA Preliminary

Normal Hierarchy

\[\sin^2 \theta_{23} \]

\[\delta_{CP} \]

NOvA-T2K Workshop, Fermilab, February 2019
Conclusions

- We present an updated neutrino oscillation analysis with:
 - 50% more neutrino beam data,
 - updated simulation and reconstruction, including a new GENIE 3 cross-section model,
 - updated extrapolation which mitigates differing detector acceptances.

- New 3-flavor oscillation results:
 - $\Delta m^2_{32} = (2.41 \pm 0.07) \times 10^{-3}$ eV2
 - $\sin^2 \theta_{23} = 0.57^{+0.04}_{-0.03}$
 - exclude IH, $\delta = \pi/2$ at $> 3\sigma$,
 - disfavor NH, $\delta = 3\pi/2$ at $\sim 2\sigma$.

- Looking ahead:
 - We can reach 3σ hierarchy sensitivity for 30-50% of δ values, with the full dataset and an upgraded beam.
 - Plan to reduce our largest systematics, those related to detector energy scale, with the results of our test beam experiment.
Questions?
Reconstructed neutrino energy (GeV) vs. Events / 0.1 GeV for different quartiles:

- **Quartile 1** (best resolution): 2020 Best-fit (purple line) with 1-σ syst. range (purple shaded region).
- **Quartile 2**: Background (gray shaded region).
- **Quartile 3**: FD data (black points with error bars).
- **Quartile 4** (worst resolution): 2020 Best-fit (purple line) with 1-σ syst. range (purple shaded region).

The plot includes a symbol representing the antineutrino ($\bar{\nu}_\mu$).
Largest pulls also correspond to some of our known most important systematics:

- Detector light model and energy scale (calibration)
- Multi-nucleon cross section

We see examples where a pull comes primarily from the neutrino or antineutrino beam, but generally do not see *contradictory* pulls.
Spectra with NOvA and T2K Best Fits

- Both best fits also include minimization of our systematic uncertainties.
2020 vs. 2017 Cross Section Model

- The QE central value is quite similar, but the expanded uncertainty due to the Z-expansion is apparent.

- In resonance, the uncertainty remains similar, but the central value has changed.

- New model, Berger-Seghal, plus the global retune to scattering data.
hN2018 FSI tuning

• New FSI model in GENIE 3.0.6: semi-classical cascade, “hN”
 – Propagates hadrons through nucleus in finite steps
 – Simulates interactions according to probabilities derived from Oset et al. quantum model*
 – Tuned using external pion scattering data, which is related to intranuclear probabilities using amplitudes from Oset model

• Old model (“hA”) simply assumes hadron scattering data applies directly to FSI

Selection: Validating Performance

- Examine PID efficiency relative to pre-selection.
 - Specifically target the behavior of the PID.
- ND: mixed data-MC sample
 - Mix simulated electrons and real hadronic showers
- FD: decay-in-flight electrons
 - Real electron showers from cosmic muons which decay

120. Data-Driven cross checks for ν_e selection efficiency in NOvA
 - Anna Hall

258. Data-Driven Wrong-Sign Background Estimates
 - Abhilash Yallappa Dombara
- Create 3 energy spectra, one for each p_t bin.
- Each spectra gets its own extrapolation.
- Predictions are summed before fitting.