MiniBooNE Oscillation Results with Complete Dataset

Adrien Hourlier
on behalf of the MiniBooNE Collaboration
2020/07/02

preprint available at arxiv:2006.16883
Comparing MiniBooNE and LSND

LSND (1993-1998)

- 0.8 GeV proton beam
- Decay At Rest neutrino flux
- LANSCE proton beam
- **Water target**
- **Beamstop**
- $\pi^+ \rightarrow \mu^+ \nu_\mu$
- $E \sim 30$ MeV
- $L \sim 30$ m

MiniBooNE (2002-2019)

- 8 GeV proton beam
- Decay In Flight beam
- **Particle reconstruction**
- **Interaction**
- **Track**
- **Cherenkov**
- **Candidate**

Different systematics. Same L/E baseline.
The MiniBooNE Detector

- Ø12.2 m sphere, Ø10m fiducial volume
- 800 tons of mineral oil, 450 tons fiducial mass
- 2 optically isolated volumes
- 1280 inner PMTs, 240 veto PMTs
- Very well understood detector
 - 3% change of the energy scale over 17 years of running
 - Measurements of cross sections for >90% of the neutrino and anti-neutrino processes
• We have added another \(\sim 6 \times 10^{20}\) POT to the neutrino dataset since the previous data release.
• The detector was turned off at the end of summer 2019, mothballed and waiting for future use…
• Almost 17 years of running, or as much as 5 army ants worth of protons!
We have added another $\sim 6 \times 10^{20}$ POT to the neutrino dataset since the previous data release. The detector was turned off at the end of summer 2019, mothballed and waiting for future use… Almost 17 years of running, or as much as 5 army ants worth of protons!
- We have added another $\sim 6 \times 10^{20}$ POT to the neutrino dataset since the previous data release.
- The detector was turned off at the end of summer 2019, mothballed and waiting for future use…
- Almost 17 years of running, or as much as 5 army ants worth of protons!

graduated from high school!
Dark matter run

- First dedicated search for direct detection of accelerator-produced dark matter in a proton beamline
- Beam aimed off of the target
- \(\nu\) flux reduced by \(~50\)
- Demonstrated the power of neutrino detectors in searching for accelerator-produced dark matter
Exellent long term detector stability over 3 run periods

- We can use two standard candles to calibrate the energy scale over the different data sets
- Scale up the energy response to match the original 2007 data release:
 - 2015-2017 neutrino data => 2% energy scaling
 - 2017-2019 neutrino data => 3% energy scaling
Neutrino energy and 3ν prediction

- Excess of data events with respect to our background prediction
- We report an excess of 560.6 ± 119.6 electron-like events (neutrino mode)

- Significance : 4.7 σ in neutrino mode only
\(\nu_e \)-like excess stable across 3 runs

- Comparing the data-prediction excess for three data taking periods in neutrino mode
- Comparable statistics between the three data releases
- The observed excess remains well compatible between the three data sets
Constraining the backgrounds

MiniBooNE preliminary
18.75 x 10^{20} POT
Neutrino mode
Constraining the backgrounds

MiniBooNE preliminary
18.75 x 10^{20} POT
Neutrino mode
Constraining the backgrounds

\(\pi^0 \) MisID
constrained from \textit{in situ}
measurement of NC \(\pi^0 \)
rate

\(\Delta \rightarrow \text{N}_\gamma \) resonance
constrained from \textit{in situ}
measured NC \(\pi^0 \)
rate and
theoretical prediction

Dirt
constrained from \textit{in situ}
dirt data sample

\(v_e \) from \(\mu \) decay
is constrained by \textit{in situ}
\(v_\mu \) CCQE measurement

\(v_e \) from K decay
constrained from \textit{in situ}
high energy events
+
SciBooNE high energy \(v_\mu \)
event rate

MiniBooNE preliminary
18.75 x \(10^{20} \) POT
Neutrino mode
New: Dirt constraint with timing

- **Dirt events:**
 - beam-related neutrino interactions in the rocks surrounding the detector
 - time shift due to extra flight path before particles enter the detector
- No cut on the event timing within the beam spill (RF cavity structure of 52.81 MHz)
- Event timing shows no significant excess of off-bunch data
 - **dirt constrained to better than 5σ**
New: Dirt constraint with timing

- Dirt events:
 - beam-related neutrino interactions in the rocks surrounding the detector
 - time shift due to extra flight path before particles enter the detector
- No cut on the event timing within the beam spill (RF cavity structure of 52.81 MHz)
- Event timing shows no significant excess of off-bunch data
 - dirt constrained to better than 5σ
New: Dirt constraint with timing

- Dirt events:
 - beam-related neutrino interactions in the rocks surrounding the detector
 - time shift due to extra flight path before particles enter the detector
- No cut on the event timing within the beam spill (RF cavity structure of 52.81 MHz)
- Event timing shows no significant excess of off-bunch data
 - dirt constrained to better than 5\sigma
New: Radial distribution disfavors dirt and π^0 background

- Improved statistics allow for more distributions to be investigated
- Radial distribution shows that the excess is spread evenly within the volume of the detector
- An excess of π^0 background would have peaked near the edge (higher probability of missing one of the γ)
- Similar approach to SNO’s CC/NC constraint
- Second best candidate: NCγ background

Excess shape tests

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>$\chi^2/9\text{df}$</th>
<th>$\Delta\chi^2$ to Best Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ν Oscillations</td>
<td>6.6</td>
<td>0</td>
</tr>
<tr>
<td>NC π^0 Background</td>
<td>20.8</td>
<td>14.2</td>
</tr>
<tr>
<td>NC γ Background</td>
<td>7.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Intrinsic ν_e Background</td>
<td>16.1</td>
<td>9.5</td>
</tr>
<tr>
<td>External Background</td>
<td>57.5</td>
<td>50.9</td>
</tr>
<tr>
<td>Other Background</td>
<td>8.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Adrien Hourlier — The XXIX International Conference on Neutrino Physics and Astrophysics — July 2nd 2020
New: Radial distribution disfavors dirt and π^0 background

- Improved statistics allow for more distributions to be investigated
- Radial distribution shows that the excess is spread evenly within the volume of the detector
- An excess of π^0 background would have peaked near the edge (higher probability of missing one of the γ)
- Similar approach to SNO's CC/NC constraint
- Second best candidate: NCγ background

Excess shape tests

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>χ^2/ν</th>
<th>$\Delta\chi^2$ to Best Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ν Oscillations</td>
<td>6.6</td>
<td>0</td>
</tr>
<tr>
<td>NC π^0 Background</td>
<td>20.8</td>
<td>14.2</td>
</tr>
<tr>
<td>NC γ Background</td>
<td>7.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Intrinsic ν_e Background</td>
<td>16.1</td>
<td>9.5</td>
</tr>
<tr>
<td>External Background</td>
<td>57.5</td>
<td>50.9</td>
</tr>
<tr>
<td>Other Background</td>
<td>8.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Statistics only χ^2
New: Radial distribution disfavors dirt and π^0 background

- Scaling dirt and π^0 backgrounds to fit the excess
- The "best fit" corresponds to a 2ν oscillation with a sterile neutrino, and fit the observed excess better than a single background
New: Radial distribution disfavors dirt and π^0 background

MiniBooNE preliminary 18.75 x 10^{20} POT Neutrino mode

- Investigate if the excess is caused by events spilling in or spilling out of the fiducial volume by varying the fiducial cut
- Excess remains significant when rejecting outer layers of the detector: excess within the detector volume

<table>
<thead>
<tr>
<th>Fiducial cut</th>
<th>Excess</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R < 500$ cm</td>
<td>560.6 ± 119.6</td>
<td>4.7 σ</td>
</tr>
<tr>
<td>$R < 400$ cm</td>
<td>472.6 ± 81.7</td>
<td>5.8 σ</td>
</tr>
<tr>
<td>$R < 300$ cm</td>
<td>208.8 ± 40.3</td>
<td>5.2 σ</td>
</tr>
</tbody>
</table>
NC $\Delta \rightarrow N\gamma$ resonance

- The production of $NC \Delta \rightarrow N\gamma$ is highly correlated to the measurement of $NC \pi^0$

- Same probability of a NC interaction, the difference in final state is the relative rate of resonant production.

 ➡ Our predicted single γ/π^0 ratio is ~0.9%, which takes into account pion absorption in the nucleus, higher mass resonances, coherent scattering, and non-resonant processes

- Apply the same correction and fractional uncertainties to $NC \Delta \rightarrow N\gamma$ as $NC \pi^0$

- Additional uncertainty to account for final state interactions (FSI)

- The single gamma estimate agrees with theory

Single photon events from neutral current interactions at MiniBooNE

En Wang, Luis Alvarez-Ruso *, Juan Nieves

Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Apartado 22085, E-46071 Valencia, Spain

New: Constraints from the beam dump run

- Reduction in neutrino production
- No change to neutral meson production and proton bremsstrahlung to first order
 - Can directly test models that predict the oscillation excess does not scale as neutrino scales (e.g. vector portal, inelastic dark matter, …)

- **Expected**: 35.5 ± 7.4 excess events in [200,1250] MeV for a POT-scaling excess
- **Measured**: 6 events, 8.8 backgrounds expected
 - -2.8 excess events
 - Explanation that scale only by POT instead of neutrino production are ruled out at 4.6σ

Excess interpretation in a sterile neutrino hypothesis

- Combined ($\nu + \bar{\nu}$) fit
- LSND and MiniBooNE points follow the same best fit 2ν oscillation interpretation
Preferred regions in sterile neutrino hypothesis

- Neutrino mode excess 4.7σ,
- Neutrino+Anti-neutrino modes excess : 4.8σ

\[
\Delta m^2, \sin^2 2\theta = (0.043 \text{ eV}^2, 0.807) \\
\chi^2/ndf = 21.7/15.5 \text{ (prob = 12.3%)}
\]
New: $\cos(\theta)$ VS E_{vis} Distributions for ν_e samples

- Compare data to backgrounds in the ($E_{\text{vis}}, \cos\theta$) space
- We believe that these distributions will guide theorists to explain our data
- These data will soon be provided in a data release with systematic errors
New: $\cos(\theta)$ VS E_{vis} Distributions for ν_e samples

Easier to visualize the excess in 1D plots of $\cos\theta$ for slices of E_{vis}
New: \(\cos(\theta) \) VS \(E_{\text{vis}} \) Distributions for \(v_e \) samples

Easier to visualize the excess in 1D plots of \(\cos\theta \) for slices of \(E_{\text{vis}} \)
New: $\cos(\theta)$ VS E_{vis} Distributions for v_e samples

Easier to visualize the excess in 1D plots of $\cos\theta$ for slices of E_{vis}

Adrien Hourlier — The XXIX International Conference on Neutrino Physics and Astrophysics — July 2nd 2020
New: \(\cos(\theta) \) VS \(E_{\text{vis}} \) Distributions for \(\nu_e \) samples

Easier to visualize the excess in 1D plots of \(\cos \theta \) for slices of \(E_{\text{vis}} \)
New : $\cos(\theta)$ VS E_{vis} Distributions for ν_e samples

- The excess at low energy occurs across a wide range of $\cos \theta$
Summary

- MiniBooNE presented a full analysis of 17 years of data taking
- The event excess has remained stable in shape and magnitude over the different data releases
- We now have a 4.7σ significance in neutrino mode only, and a 4.8σ significance in a combined ($\nu + \bar{\nu}$) analysis for our nominal cut of $R<500$ cm.
- Several explanations for the excess are disfavored
 - NC π^0
 - Dirt event
 - Dark matter run ruled out non-neutrino-related beam backgrounds
- In the spirit of responding to requests for more information, we are now in a position to provide additional information on timing, visible energy VS angle of lepton scatter, and radius.
- Further studies under way to better understand the excess, including investigating Meson Exchange Currents, stay tuned!

preprint available at arxiv:2006.16883
Thank you!
Constraining $\Delta \rightarrow N\gamma$ background from NCπ^0 background

- NC π^0 produced by:
 - Δ production in 12C (52.2%)
 - Δ production in H$_2$ (15.1%)
 - Coherent scattering on 12C (12.5%)
 - Coherent scattering H$_2$ (3.1%)
 - higher mass resonance (12.9%)
 - non resonant BG (4.2%)

- 2/3 of Δ decay in π^0
- 62.5% π^0 can escape the nucleus
- $\Delta \rightarrow N\gamma$ BR = 0.60% for 12C
- $\Delta \rightarrow N\gamma$ BR = 0.68% for H$_2$

\[
\frac{N_{\Delta \rightarrow N\gamma}}{N_{NC\pi^0}} = (0.151 \times 0.0068 \times 1.5) + \frac{(0.522 \times 0.0060 \times 1.5)}{0.625} = 0.0091
\]
Theoretical Estimates for NC-γ production Agree well with MiniBooNE Estimates

Single photon events from neutral current interactions at MiniBooNE

En Wang, Luis Alvarez-Ruso *, Juan Nieves

Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Avenida de la Universidad 22085, E-46071 Valencia, Spain

Theoretical Estimates for NC-γ production Agree well with MiniBooNE Estimates

<table>
<thead>
<tr>
<th>Table 4</th>
<th>E_Y distribution of the NC photon events in the MiniBooNE neutrino run, comparing our estimate to the MiniBooNE estimate [1,35].</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_Y (GeV)</td>
<td>coh</td>
</tr>
<tr>
<td>[0.1, 0.2]</td>
<td>0.72 (1.5)</td>
</tr>
<tr>
<td>[0.2, 0.3]</td>
<td>3.2 (5.5)</td>
</tr>
<tr>
<td>[0.3, 0.4]</td>
<td>3.7 (5.4)</td>
</tr>
<tr>
<td>[0.4, 0.5]</td>
<td>1.0 (1.7)</td>
</tr>
<tr>
<td>[0.5, 0.6]</td>
<td>0.32 (1.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5</th>
<th>E_Y distribution of the NC photon events in the MiniBooNE antineutrino run, comparing our estimate to the MiniBooNE estimate [1,35].</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_Y (GeV)</td>
<td>coh</td>
</tr>
<tr>
<td>[0.1, 0.2]</td>
<td>0.55 (1.2)</td>
</tr>
<tr>
<td>[0.2, 0.3]</td>
<td>2.0 (3.8)</td>
</tr>
<tr>
<td>[0.3, 0.4]</td>
<td>1.8 (3.0)</td>
</tr>
<tr>
<td>[0.4, 0.5]</td>
<td>0.36 (1.0)</td>
</tr>
<tr>
<td>[0.5, 0.6]</td>
<td>0.10 (0.72)</td>
</tr>
</tbody>
</table>

Can neutrino-induced photon production explain the low energy excess in MiniBooNE?

Xilin Zhang a,b,*, Brian D. Seror b,1

a Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
b Department of Physics and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47405, USA

Excess for $\cos \theta$ VS E_{vis} plot
Neutrino only fit

- Only a small difference with respect to the \((\nu + \bar{\nu}) \) combined fit
-\(\nu \)-only: \((\sin^2 2\theta, \Delta m^2) = (0.843, 0.039 \text{ eV}^2) \)
-\((\nu + \bar{\nu}) \): \((\sin^2 2\theta, \Delta m^2) = (0.807, 0.043 \text{ eV}^2) \)
Radial distribution in SNO

- NC and CC contributions have difference R-dependencies, one can use the radial distribution to estimate the relative contribution of each process.
- SNO is only one of the many examples of experiment using radial position to constrain components of their data.
FIG. 9: Comparisons between the data and simulation for the electron-muon likelihood distribution after successive cuts are applied: (a) no PID cut, (b) electron-muon likelihood cut, (c) electron-muon plus electron-pion likelihood cuts, and (d) electron-muon plus electron pion likelihood cuts plus a gamma-gamma mass cut. The vertical lines in the figures show the range of energy-dependent cut values.
FIG. 10: Comparisons between the data and simulation for the electron-pion likelihood distribution after successive cuts are applied: (a) no PID cut, (b) electron-muon likelihood cut, (c) electron-muon plus electron-pion likelihood cuts, and (d) electron-muon plus electron pion likelihood cuts plus a gamma-gamma mass cut. The vertical lines in the figures show the range of energy-dependent cut values.
PID variables: $m_{\gamma\gamma}$ distribution

FIG. 11: Comparisons between the data and simulation for the gamma-gamma mass distribution after successive cuts are applied: (a) no PID cut, (b) electron-muon likelihood cut, (c) electron-muon plus electron-pion likelihood cuts, and (d) electron-muon plus electron pion likelihood cuts plus a gamma-gamma mass cut. The vertical lines in the figures show the range of energy-dependent cut values.