

Jiajie Ling On behalf of the Daya Bay collaboration Sun Yat-Sen University

XXIX Neutrino Conference Fermilab June 22 – July 2, 2020

Reactor Antineutrino Oscillation

Immune to CP violation and matter effects

Jiajie Ling (SYSU)

Far Hall 1540 m from Ling Ao I 1910 m from Daya Bay 324 m overburden

Relative Measurement: 3 Experimental Halls (EH) 8 "identical" antineutrino detectors (AD)

EH1

(AD-1, 2)

Entrance

Daya Bay Layout

EH3 (AD-4, 5, 6, 7)

> Ling Ao Near Hall 470 m from Ling Ao I 558 m from Ling Ao II 100 m overburden

> > EH2 (AD-3, 8)

Daya Bay Near Hall 363 m from Daya Bay 93 m overburden

Daya Bay Cores

Ling Ao II Cores

17.4 GW_{th} power
8 operating detectors
160 t total target mass

Antineutrino Detector (AD) System

14

12

 $0^{\frac{21}{21}}$

0

0

energy resolution (%)

Detector Energy Response

- Rolling gain calibration using dark noise
- Weekly calibration
 - ⁶⁸Ge, ²⁴¹Am¹³C, ⁶⁰Co
 - LED diffuser ball
- Special calibration campaigns
 - ¹³⁷Cs, ⁵⁴Mn, ²⁴¹Am⁹Be, ²³⁹Pu¹³C
- Spallation neutrons and ¹²B

⁶⁰Co

1 MeV

4

reconstructed energy/MeV

3

Natural radioactivity

 ^{40}K

 ^{137}Cs

²¹²Po

⁵⁴Mn

n-H

8.5% @

2

NIM A750 19 (2014) NIM A797 260 (2015)

Jiajie Ling (SYSU)

Energy Nonlinearity Calibration

NIM A **940** 230 (2019)

- Two major sources of energy nonlinearity:
 - Scintillator response (Birks + Cherenkov)
 - Readout electronics (FADC correction)
- Energy model for positron is derived from measured gamma and electron responses using simulation.

~0.5% absolute energy uncertainty

XXIX Neutrino Conference

4 Million IBD Candidates

IBD rates follow the relative reactor flux expectation

Oscillation Results from nGd

Jiajie Ling (SYSU)

Precision Measurements on $\sin^2 2\theta_{13}$ and $|\Delta m_{ee}^2|$

$sin^2 2\theta_{13}$ from nH-Capture

PRD 93 072011 (2016)

- Independent sin²2θ₁₃ measurement
- Challenging: 12% (54%) accidental background at near (far) hall Rate Only analysis: $\sin^2 2\theta_{13} = 0.071 \pm 0.011$ Improved nH analysis result is coming soon

Jiajie Ling (SYSU)

Sterile Neutrino Search

$$P(\bar{\nu}_e \to \bar{\nu}_e) \cong 1 - \cos^4\theta_{14} \sin^2 2\theta_{13} \sin^2\left(\frac{\Delta m_{31}L}{4E_\nu}\right) - \sin^2 2\theta_{14} \sin^2\left(\frac{\Delta m_{41}L}{4E_\nu}\right)$$

- Search for an additional oscillation frequency besides $\Delta m^2_{\ 31}$ and $\Delta m^2_{\ 32}$
- Data is consistent with 3-v model; No light sterile neutrino signal observed
- Consistent results from Feldman-Cousins and CLs methods The most stringent upper limit for light sterile neutrinos ($\Delta m^2 < 0.2 \text{ eV}^2$)

Jiajie Ling (SYSU)

- The combined results can exclude the LSND and MiniBooNE signal region at $\Delta m_{41}^2 < 5 \text{ eV}^2$ at 90% C.L.
- More details in T. Carroll's talk for MINOS/MINOS+ on July 2nd

Reactor \bar{v}_e Flux and Spectrum

- Daya Bay result is consistent with the previous experimental results
- Data/prediction spectrum shows a total >5σ deviation, especially significant deviation at 4-6 MeV region of the prompt energy (>6σ)
- No effect on far/near relative measurement for $heta_{13}$ and Δm^2_{ee}

Reactor Isotope Fuel Evolution

Jiajie Ling (SYSU)

Isotope Yields and Spectra Measurements from Fuel Evolution Study

- Daya Bay data prefer ²³⁵U to be mainly responsible for the Reactor $\bar{\nu}_e$ Anomaly
- First measurement of ²³⁵U and ²³⁹Pu spectra from a commercial reactor
- Consistent with bump structure at 4-6 MeV
- Local spectra deviation from prediction: 235 U (4 σ) and 239 Pu (1.2 σ)
- Plan a joint fit with PROSPECT and STEREO to have a better measurement of ²³⁵U

Jiajie Ling (SYSU)

Daya Bay

\bar{v}_e Search associated with Gravitational Wave (GW) Events

Summary

- Daya Bay has made the most precise measurements on $\frac{\sin^2 2\theta_{13}}{\sin^2 e_{e}}$ and $\left| \Delta m_{ee}^2 \right|$ with ~3% precision
 - Expected final precision of 2.7% on $\sin^2 2\theta_{13}$ is likely to be the standard for decades to come
- Set the most stringent upper limit for light sterile neutrino signal with $\Delta m_{41}^2 < 0.2 \text{ eV}^2$
 - A joint fit with MINOS/MINOS+ is able to exclude most of LSND/MiniBooNE signal region
- Reactor fuel evolution is observed
 - Disfavor sterile neutrino as the main explanation of Reactor Antineutrino Anomaly with fuel evolution study
 - First measurement of ²³⁵U and ²³⁹Pu spectra from commercial reactor
- Daya Bay is taking data through the pandemic and will keep running until the end of 2020
- Final Daya Bay results expected by Neutrino 2022

Poster Advertisement

- Olivia Dalager
 - Poster #531: Daya Bay's Latest Oscillation Results Using Neutron Capture on Gadolinium
- Jeremy Gaison
 - Poster #556: Towards a Joint Constraint of the ²³⁵U Reactor Antineutrino Spectrum by Combining the Daya Bay, PROSPECT, and STEREO Measurements
- Jianrun Hu
 - Poster #149: Latest Results of the Reactor Fuel Evolution Study at Daya Bay
- Jinjing Li
 - Poster #131: Measurement of sin²2θ₁₃ via neutron capture on hydrogen at Daya Bay
- Roberto Mandujano
 - Poster #426: Reactor Antineutrino Spectrum and Flux Measurement at Daya Bay

191 Collaborators, 41 Institutions

The Daya Bay Collaboration

Asia (24)

Beijing Normal Univ., CGNPG, CIAE, Congqing Univ., Dongguan Univ. Tech., ECUST, GXU, IHEP, Nanjing Univ., Nankai Univ., NCEPU, NUDT, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan (Sun Yat-sen) Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

Europe (2)

Charles Univ., JINR Dubna North America (15)

Brookhaven Natl Lab, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Siena College, Temple University, UC Berkeley, Univ. of Cincinnati, Univ. of California Irvine, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale

Jiajie Ling (SYSU)

XXIX Neutrino Conference

1 Q

Jiajie Ling (SYSU)