

JUNO Status

Yue Meng

Shanghai Jiao Tong University

On behalf of the JUNO collaboration

Content

- Introduction to JUNO
- Physics Prospects
- Detector and Status
- Timeline
- Summary
- JUNO Posters

Jiangmen Underground Neutrino Observatory (JUNO)

• JUNO has a rich program in neutrino physics and astrophysics

Physics Prospects

Nobs/Nexp

Events per 1 MeV

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

 $\Delta_{ij} = 1.27 \Delta m_{ij}^2 L/E$

Neutrino mass ordering

- 3σ neutrino mass ordering sensitivity within 6 years. ٠
- 4σ with Δm^2_{32} input from accelerator experiments. ٠
- $> 5\sigma$ combined analysis with IceCube within 3–7 years or PINGU ٠ in 2 years (arXiv: 1911.06745)

- Sub-percent accuracy for θ_{12} , • Δm_{21}^2 and Δm_{31}^2
- Current precision ٠

	Δm_{21}^2	$ \Delta m_{31}^2 $	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{23}$	δ	0.2
Dominant Exps.	KamLAND	T2K	SNO+SK	Daya Bay	$NO\nu A$	T2K	
Individual 1σ	2.4%	2.6%	4.5%	3.4%	5.2%	70%	0.0
Nu-FIT 4.0	2.4%	1.3%	4.0%	2.9%	3.8%	16%	2

Physics Prospects

Physics Prospects

Geo-neutrinos Explore origin and thermal $_{10^2}$ evolution of the Earth keV

- 400 500 neutrinos per ٠ vear
- Precision 6% in 10 years .

Proton decay

- Competitive sensitivity to proton decay searches
- Triple coincidence signal

s/36

Multi-messager astrophysics

- lower the energy threshold of the detector down to O(10) keV
- Realtime monitoring of the MeV transient neutrino sky

- Reactor flux shape precise measurement
- Sterile neutrinos

٠

Other exotic searches, etc

JUNO Collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
Brazil	PUC	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	UEL	China	UCAS	Italy	INFN Catania
Chile	PCUC	China	USTC	Italy	INFN di Frascati
Chile	UTFSM	China	U. of South China	Italy	INFN-Ferrara
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
China	ChongQing University	China	Xiamen University	Italy	INFN-Perugia
China	CIAE	China	Zhengzhou U.	Italy	INFN-Roma 3
China	DGUT	China	NUDT	Latvia	IECS
China	ECUST	China	CUG-Beijing	Pakistan	PINSTECH (PAEC)
China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
China	Harbin Institute of Technology	Croatia	PDZ/RBI	Russia	JINR
China	IHEP	Czech	Charles U.	Russia	MSU
China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jinan U.	France	LAL Orsay	Taiwan-China	National Chiao-Tung U.
China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.
China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
China	Pekin U.	France	Subatech Nantes	Thailand	PPRLCU
China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD
China	IGG-Beijing	Germany	TUM	USA	UC Irvine
China	IGG-Wuhan	Germany	U. Hamburg		

77 institutes669 members

Neutrino detection

Detection via inverse beta decay (IBD) event

 $ar{
u}_e + p
ightarrow e^+ + n$

The observable electron anti-neutrino spectrum (red line) The cross section of inverse beta decay (blue line) Copyright 2015, rights managed by Nature Publishing Group

- Prompt photons from e⁺ ionization and annihilation (1-8 MeV)
- Delayed photons from n capture on Hydrogen (2.2 MeV)
- Time ($\tau \simeq 200 \ \mu s$) and spatial correlation

Keys for the JUNO detector

- 1. Optimal baseline for the detector
- 2. Large statistics
 - 26.6 GW_{th} power
 - ~60 IBD events per day
- Energy resolution < 3%/VE between 1 MeV and 8 MeV

$$\frac{\sigma_{E_{\rm vis}}}{E_{\rm vis}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm vis}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm vis}}\right)^2}$$

- 2 a: the statistical term
 b: a constant term independent of the energy, dominated by position non-uniformity
 c: the contribution of a background noise term
- 4. Energy scale uncertainty < 1%
 - Comprehensive calibration strategy
- 5. Background control

Experiment	Daya Bay	Borexino	KamLAND	JUNO
Target mass [tons]	8 x 20	~300	~1,000	20,000
Photo electron collection [p.e./MeV]	~160	~500	~250	~1200
Energy resolution	~8.5%	~5%	~6%	~3%
Photocathode coverage	12%	34%	34%	75%
Energy calibration uncertainty	0.5%	1%	2%	<1%

Central detector (CD)

- 35 m diameter acrylic sphere
- Stainless steel truss
- 20,000 tons purified liquid scintillator
- 18,000 20-inch PMTs
- 25,600 3-inch PMTs
- Filling/Overflow/Circulation (FOC) system

Liquid scintillator

Liquid scintillator (LS) recipe:

• 2.5 g/L PPO + (1-4) mg/L bis-MSB

LS recipe from Daya Bay

Attenuation Length: > 20 m @430 nm

- Improve raw materials and production process
- Purification systems (Al₂O₃ Filtration column, water extraction, gas stripping)

Low radioactive backgrounds:

- 10⁻¹⁵ g/g for neutrino mass ordering determination
- 10⁻¹⁷ g/g for solar neutrino detection

11

20-inch PMTs

18,000 20-inch PMTs

- 13,000 Micro-channel plates PMTs (Northern Night Vision Technology (NNVT), MCP-PMT)
- 5,000 Dynode PMTs (Hamamatsu, R12860HQE)

- The photon detection efficiency (PDE): MCP PMT >29% and Dynode PMT is 28.1%
- HV dividers mass production is ongoing
- 7000 PMTs have been potted with multiple waterproof layers
- Implosion protection covers were designed and produced

PDE of 20-inch PMTs

3-inch PMTs

25,600 3-inch HZC Photonics PMTs

- Control systematic uncertainty
 - Correct non-linearity response of 20inch PMTs
- Increase dynamic range
 - Improve muon reconstruction resolution
 - Supernova detection (if very near)
- Standalone measurement of solar parameters

Status

- 26,000 photomultipliers already produced
- Delivery of the full electronics in 2021

XP72B22

Custom 3-inch PMTs for JUNO

20-inch and 3-inch PMTs interleaving

Calibration System

• **1D:** Automatic Calibration Unit (ACU)

- 2D: Cable Loop System (CLS) and Guide Tube Calibration System (GTCS)
- **3D**: Remotely Operated Vehicle (ROV)
- Auxiliary systems: Calibration house, Ultrasonic Sensor System (USS), CCD and A Unit for Researching Online the LSc tRAnsparency (AURORA)

Effective Energy resolution

- The bias in the reconstructed energy is expected to be less than 1%.
- The effective energy resolution is expected to be less 3.0% between 1 MeV and 8 MeV.

• Active and passive shielding for CD

Water Cherenkov detector:

- Shield CD from ambient radioactivity and neutrons induced by cosmic rays
- Veto muon induced backgrounds
- ~2400 20-inch MCP-PMT used
- 35 ktons ultrapure water with circulation
- Detector efficiency is expected to be larger than 99%

Top tracker (TT):

- Reuse the Target Tracker walls of the OPERA experiment
- 3-layers plastic scintillator modules are already at JUNO site

A magnetic field (EMF) shielding system

- Shielding earth magnetic field for 20" PMTs
- Double coil system

Taishan Antineutrino Observatory (TAO) is a satellite detector of JUNO

Purposes

- Precisely measure the reactor antineutrino spectrum
- Provide a model independent reference spectrum for • JUNO
- Provide isotopic yields and spectra .
- Reactor monitoring and safeguard .
- Search for sterile neutrino

Detector design

- 30-35 m from a Taishan reactor core (4.6 GWth)
- Ton-level Gadolinium-doped LS at -50 °C ٠
- 10 m² SiPM with PDE>50% and >90% coverage •
- Sub-percent energy resolution .

TAO installation and commissioning in 2022

TAO detector design

Civil Construction

- Slope tunnels and vertical shafts are finished.
- Experimental cavern digging is ongoing.
- Expect to finish in 2020.

JUNO Timeline

2022 **Detector ready for** data taking

2015

PMT

setup

2014

- International collaboration established
- Conceptual design

2016

Neutrino physics with JUNO

- PMT production •
- start CD parts production start
- production line Yellow book published
- CD parts R&D ٠
- Civil ٠ construction start

- PMT testing • start
- TT arrived •

2018

- PMT potting
- Start delivery of surface building
- Start production of acrylic sphere

- 2019-2021
- **Electronics production** starts
- Civil construction and lab preparation completed
- **Detector construction**

- JUNO has rich physics topics, including determining neutrino mass ordering, precisely measuring the oscillation parameters, detecting solar neutrinos, observing supernove neutrinos, geo-neutrinos, atmospheric neutrinos, etc.
- JUNO sub-system R&D and production programme well underway.
- JUNO experiment is expected to start data taking in 2022.

JUNO Posters

- #11, Huiling Li, Early Warning from the Detection of Pre-supernova Neutrinos in Future Large Liquid-scintillator Detectors
- #48, Cedric Cerna, The 3-inch Photomultiplier System of the JUNO Experiment
- #86, Jie Cheng, Diffuse Supernova Neutrino Background Detection at JUNO
- #100, Yang Han, Dual-calorimetry in JUNO
- #105, Alexandre Gottel, OSIRIS A 20 ton liquid scintillator detector as a radioactivity monitor for JUNO
- **#129, Donglian Xu**, Multi-messenger and low-energy triggger system for JUNO
- #151, Cleanliness Control Group, Radioactive Cleanliness Control for the JUNO Experiment
- **#152, Yue Meng**, Calibration System of the JUNO Experiment
- **#154, Ziping Ye**, Real-time Monitoring of Transient Phenomena with JUNO
- **#206, Giulio Settanta**, Atmospheric Neutrino Physics with JUNO
- #207, Cristina Martellini, Supernova neutrino Physics with the JUNO detector
- #242, Tobias Sterr, Performance of the PMT Mass Testing System for the JUNO Experiment
- #243, Paolo Montini, Taishan Antineutrino Observatory (TAO) Project
- **#336, Matthias Raphael Stock**, Measuring the Fluorescence Time Profile of the JUNO Liquid Scintillator using Gamma Radiation and a Pulsed Neutron Beam
- **#360, Yu Chen**, Measurements on the afterpulse of the 20-inch Photomultiplier Tubes for the JUNO experiment
- #370, Zhonghua, Qing, Status of 20-inch PMT Instrumentation for the JUNO experiment
- #377, Miao Yu, Detector simulation in the JUNO experiment
- **#386, Ilya Butorov**, Large photocathode 20-inch PMT testing at the scanning station for the JUNO experiment
- #465 Rong Zhao, The Delivery Status of JUNO 20" PMTs and their Performance