KATRIN: Recent Results and Future Perspectives

Susanne Mertens for the KATRIN collaboration Max Planck Institute for Physics & Technical University Munich June 2020, Neutrino-2020

General idea

E₀

The challenge

- Ultra-strong β -source: 10¹¹ decays/s
- Low background level < 0.1 cps
- Excellent energy resolution ~ 1 eV
- Precise understanding of spectrum

KATRIN

- Experimental site: Karlsruhe Institute of Technology (KIT)
- International Collaboration (150 members)
- Design sensitivity: 0.2 eV (90% CL) (1000 days of measurement time)

KATRIN Working Principle

Windowless gaseous tritium source

- molecular tritium in closed loop system
- 10¹¹ decays/s

KATRIN Working Principle

Transport section

- magnetic guidance of electrons (@ 4 T)
- tritium flow reduction by > 10^{14} + tritium ion removal

KATRIN Working Principle

Susanne Mertens

High-intensity electron gun

- Precise (< 0.25%) determination of column density
- TOF mode: Measurement of Energy-Loss PDF

J. Behrens et al., Eur. Phys. J. C 77, 410 (2017) V. Hannen et al., Astroparticle Physics 89 (2017) 30 J. Bonn et al., NIM A 421 (1999) 256

Max-Planck-Institut fü

Poster #117

L. Schimpfet al

83mKr conversion electrons

- J. Behreins
 Variation of electric and magnetic fields in the analyzing plane
 - Variations of source electric potential (when used together with tritium)

Key Monitoring Devices

- Laser Raman system: monitoring of tritium purity and gas composition at the 0.1% level
- Forward beam monitor: monitoring of activity at the 0.1% level
- **High voltage system:** monitoring of high voltage at the ppm level (20 mV)

Susanne Mertens

First neutrino mass campaign

•	Measurement time:	22 days
---	-------------------	----------------

Gas density:	22%
--------------	-----

 Isotopic purity: 	97.5% tritium	١
--------------------------------------	---------------	---

- Source activity: 2.45 · 10¹⁰ Bq
- Total statistics:

2 · 10⁶ e's

column density of $22\% = 1.1 \cdot 10^{17}$ molecules/cm²

Measurement strategy

- # HV set points: 27
- interval: $E_0 40 eV, E_0 + 50 eV$
- scanning time: **2 hours**
- # scans: 274
- HV stability: 20 mV (ppm-level)

Tritium spectrum calculation

Blinded analysis

Systematic uncertainties

Budget of uncertainties

we are largely statistics dominated !!!

S. Goerhardt et al., JINST 13 (2018) no.10, T10004 S. Mertens et al, Astropart. Phys. 41 (2013), 52–62

Susanne Mertens

Final fit result

- 2 million events
- 4 free parameters: background, signal normalization, E_0 , m_{ν}^2
- excellent goodness-of-fit: p-value = 0.56
- note: error bar increased by factor 50 (for visibility)!

20

Final fit result

Best fit results:

$$m_{
u}^2 = \left(-1.\,0^{+0.9}_{-1.1}
ight)\,{
m eV^2}$$

 \rightarrow compatible with zero

 \rightarrow probability of 16%, if true m $_{_{\rm V}}$ = 0 eV

$E_0 = 18573.7 \pm 0.1 \,\mathrm{eV}$

- \rightarrow Q-value : 18575.2 ± 0.5 eV
- \rightarrow good agreement with literature (Q = 18575.72 ± 0.07 eV)

E. Myers et al. Phys. Rev. Lett. 114, 013003 (2015)

Improved neutrino mass limit

Lokhov-Tkachov

• $m_v < 1.1 \text{ eV} (90\% \text{ CL}) = \text{sensitivity}$

Feldman-Cousins

• m_v < 0.8 eV (90% CL)

Bayesian Confidence Interval ($m_{\nu}^2 > 0$, flat)

• m_v < 0.9 eV (90% CI)

Max-Planck-Institut

KATRIN Collab, Phys. Rev. Lett. 123, 221802 (2020)

Historical context

 $m^{2}(\nu_{e}) c^{4} (eV^{2})$

24

m₄= 10 eV

Signature of light sterile neutrino

 \rightarrow See Reactor and Geo ν session on 25 June

 \rightarrow See **sterile** v session on **2 July** + 0.8 Differential decay rate (a.u.) ····· $\cos^2\theta \frac{\mathrm{d}\Gamma}{\mathrm{d}F}(m_\beta)$ $m_{\mathcal{B}}$ m_4 $--- \sin^2 \theta \frac{\mathrm{d}\Gamma}{\mathrm{d}F}(m_4)$ 0.6 $\sin^2\theta \frac{d\Gamma}{dE}(m_4) + \cos^2\theta \frac{d\Gamma}{dE}(m_\beta)$ Active 0.4 branch Characteristic distortion of the spectrum Sterile branch 0.2 ЗH $\sin^2\theta$ 0.0 18560 18565 18570 18575 ³He Energy (eV)

Susanne Mertens

eV-scale sterile neutrino search

- same data set as for neutrino mass
- 3+1 sterile neutrino model
- grid search in m_4 , $|U_{e4}|^2$ plane
- m_{ν} fixed to minimal allowed value (0.009 eV)

Poster #108

T. Lasserre et al

eV-scale sterile neutrino search

High Δm_{41} region:

✓ Improve exclusion with respect to DANSS, PROSPECT, and STEREO

 \checkmark Exclude parameter space of Reactor Anomaly (RAA)

Low Δm_{41} region:

- ✓ Improve MAINZ and TROITSK limit
- \checkmark The NEUTRINO-4 hint at the edge of exclusion limit

Poster #108 T. Lasserre et al

eV-scale sterile neutrino search

Demonstrate **potential** and **complementarity** of KATRIN to probe the sterile-v hypothesis

Future: A large fraction of RAA region of interest will be probed with upcoming campaigns

Signature of keV sterile neutrino

 \rightarrow See talk by Kev Abazajian, June 24

keV-scale sterile neutrino search

Proof of principle: Deep scan (1.6 keV below E₀) with low-activity commissioning data

- \checkmark excellent agreement of model and data (p-value = 0.6)
- \checkmark sensitivity to $\sin^2 \theta < 10^{-3}$ @ m₄ = 0.4 keV

Future: Novel multi-pixel Silicon Drift Detector array (TRISTAN)

✓ high-statistics search

✓ target sensitivity of $\sin^2 \theta < 10^{-6}$

Mertens et al, JCAP 1502 (2015) Mertens et al, J. Phys. G46 (2019)

T. Houdy et al

2 nd neutrino mass campaign				
•	Measurement time:	31 days		
•	Gas density:	84%		
•	Isotopic purity:	98.6% tritium		
٠	Source activity:	9.8 · 10 ¹⁰ Bq		
•	Total statistics:	4 · 10 ⁶ e′s		

Data soon to be un-blinded

column density of $100\% = 5 \cdot 10^{17}$ molecules/cm²

Calibration and Optimization

 Extensive study of plasma properties at different gas densities, temperature and boundary conditions

Poster #125: D. Hinz et al Poster #361: E. Ellinger et al

• Improved el.mag. field config. to reduce background $(\div 2) \rightarrow 150 \text{ mcps}$

- 3rd neutrino mass campaign
- m_v measurement started today

Conclusion

- New world-best direct neutrino mass measurement: $m_{\nu} < 1.1 \text{ eV}$ (90% C.L.)
 - With upcoming 1000 days of measurement time
 - tackle low sub-eV sensitivity

- First constraints on **eV sterile neutrinos**
- Promising potential to search for keV sterile neutrinos
 - New data release expected soon
- Next KATRIN run (with optimized settings) has started today

Thank you for your attention

Prof. Dr. Susanne Mertens for the KATRIN collaboration Technical University Munich & Max Planck Institute for Physics

We acknowledge the support of Helmholtz Association (HGF), Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, 05A17PDA, and 05A17WO3), Helmholtz Alliance for Astroparticle Physics (HAP), the doctoral school KSETA at KIT, and Helmholtz Young Investigator Group (VH-NG-1055), Max Planck Research Group (MaxPlanck@TUM), and Deutsche Forschungsgemeinschaft DFG (Research Training Groups Grants No. GRK 1694, GRK 1694 and GRK 2149, Graduate School Grant No. GSC 1085-KSETA, and SFB-1258 in Germany ; Ministry of Education, Youth and Sport (CANAM-LM2015056, LTT19005) in the Czech Republic; and the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-AC02-05CH11231, and DE-SC0011091 in the United States. This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 852845).

eV-sterile neutrino search

eV-sterile neutrino search

KATRIN backgrounds

KATRIN background mitigation

- LN cooled baffle + shifted analyzing plane S. Goerhardt, et al., JINST 13 (2018) no.10, T10004
- ✓ Background reduction by factor of 2.3 to 153 mcps

Final fit result (endpoint)

 $E_0^{fit} = E_0 + \phi_{source} - \phi_{WF,MS}$

- fitted E₀ =
- Q-value (KATRIN):
- Q-value (literature):
- 18573.7 ± 0.1 eV
- 18575.2 ± 0.5 eV
 - 18575.72 ± 0.07 eV
- ✓ excellent agreement
- ✓ confidence in overall energy scale ☺

Source activity

