

Hadron production measurements for neutrino experiments

Matej Pavin,

Neutrino 2020 June 29, 2020

Outline

- A brief introduction to the hadron production measurements for neutrino experiments
- Why we need hadron production measurements?
- NA61/SHINE and EMPHATIC

Accelerator-based neutrino beams

Atmospheric neutrinos

- Hadronic shower in the atmosphere caused by cosmic ray interactions
- Neutrinos are decay products of daughter particles created in the shower

How to estimate neutrino flux?

- Hard to measure directly → we rely on hadronic interaction models
- Large differences between models (20% 30%) → in some cases order of magnitude
- External hadron production data is used to constrain the models

Is neutrino flux uncertainty important? - Accelerator neutrinos

- 3-flavor oscillation measurements → far to near detector ratio → flux uncertainty cancels out in ideal conditions
 - o In reality neutrino source does not look the same in near and far detectors
 - Flux uncertainty comes into play indirectly through neutrino cross-section measurements
- Measurements with a single neutrino detector (cross-sections, sterile neutrino searches, ...) are limited by neutrino flux
- Important for v-prism technique in upcoming experiments

	Statistics [%]	Flux [%]	Cross-section model [%]	Detector [%]
σ(ν)	0.87	9.14	1.16	2.63
σ(anti-v)	3.22	9.37	2.13	1.82
σ(anti-v)/σ(v)	3.22	3.58	1.56	1.11

Measurement of $(anti)\nu_{\mu}$ charged current inclusive cross-sections

Phys.Rev. D96 (2017) no.5, 052001

T2K measurements

Flux uncertainty at T2K(T2HK) and DUNE

- T2K v_e flux uncertainty at low energies is limited by the untuned interactions outside of the target (π^{\pm} + Al \rightarrow π^{\pm} + X, K $^{\pm}$ + Al \rightarrow K $^{\pm}$ + X)
 - Untuned → not covered by hadron production measurements
- Nearly 50% of wrong-sign neutrinos come from interactions outside of the target

Is neutrino flux uncertainty important? - Atmospheric neutrinos

- CP violation measurements → small effect (~2%) in sub-GeV neutrino sample
- The uncertainty is dominated by hadron production below 15 GeV (π^+/π^- ratio)
- Only HARP data covers the important region

Hadron interactions (simplified)

Hadron production measurements

- Hadron production measurements can be used to tune models
- 1 Thin target measurements

- Total, elastic, inelastic and production cross-section measurements
- Differential cross-section
- Useful for model tuning
- Useful for all experiments

- Measuring hadron multiplicities coming from the target surface
- Whole particle shower in the target is taken into account
- Beam and target specific measurement
- Necessary to achieve < 5% flux uncertainty

A brief history of hadron production measurements

- Many measurements are quite old (1960s 1980s)
 - Thin target data
- Good data, but many things are missing (lost):
 - How systematic uncertainties are calculated
 - Covariance matrices
 - Data points (only log plots available)
 - Definitions of what is measured not clear due to terminology changes over the year
- Majority of the recent measurements were done by NA61/SHINE collaboration
- Upcoming experiment: EMPHATIC
- We need a consistent way of publishing hadron production data

North Area 61 / SPS Heavy Ion and Neutrino Experiment NA61 / SHINE

Precise hadron production measurements for neutrino flux re-weighting in T2K,
 HyperK, and Fermilab neutrino experiments

NA61/SHINE hadron production measurements

- Thin and replica target measurement
- NA61/SHINE data played important role in the success of the T2K programme
 - \circ Replica target data allowed reduction of the flux uncertainty from 10% to 4%-5% for (anti) $v_{_{II}}$ flux
- Huge data-taking campaign for the US neutrino programme
 - o Proton/pion/kaon interactions in carbon/ beryllium/ aluminium / NOVA replica target (31-120 GeV/c)
 - Analysis ongoing / some of the results are published

Measurements of hadron production in π^+ + C and π^+ + Be interactions at 60 GeV/c

Production of π^{\pm} , K^{\pm} , p, K^{0} _s, Λ

NA61/SHINE upgrades

- Important for hadron production measurements:
 - Forward TPCs (already installed)
 - TPC readout electronics from ALICE → 1 kHZ readout speeds
 - Silicon vertex detector
- New replica target measurements for T2K and HyperK are already approved by SPSC
- MC studies ongoing for low momentum beamline for NA61/SHINE
 - Current NA61/SHINE beamline is limited > 13 GeV/c

EMPHATIC

Experiment to Measure the Production of Hadrons At a Testbeam In Chicagoland

- Tabletop experiment run by neutrino physicists (T2K, SK, HK, DUNE, NOVA) + E50 experiment
- USA (magnet, silicon strips, ARICH), Japan (RPC, calorimeter, T0) and Canada (magnet, ARICH, DAQ)
- Complementary to NA61/SHINE (physics programme and detector technology)
- Approved by Fermilab PAC
- Fermilab Test Beam Facility (FTBF) → secondary beam 2 - 120 GeV/c
- Compact hadron spectrometer
- Angular acceptance 400 mrad

arXiv:1912.08841 [hep-ex]

EMPHATIC - what do we want to measure?

- Measurements for T2K, NOVA, DUNE, HyperK, ...
- 2-15 GeV/c pion, proton, kaon scattering on beryllium, carbon, aluminium, iron, boron nitride and boron oxide

Better understanding of differences between thin and replica target data

measurements

Test run in 2018

- Goal: prove that silicon strips can be used for forward scattering measurements
- Measurement of forward proton-carbon scattering
- No secondary PID or momentum measurements

EMPHATIC next data-taking campaign

- Phase 1 data-taking was planned for April 2020
 - Postponed until next winter or early spring
 - 3-4 week run → DAQ rate 10k per spill (1 spill = 4s each minute)
 - Limited acceptance 150 mrad → because existing SSDs will be used
 - Small acceptance magnet, RPCs, and ARICH detector
 - o Pion, kaon and proton beams
 - o Beryllium, carbon, aluminum, titanium, iron, composite targets for atmospheric neutrinos
- Phase 2 → full acceptance
 - 400 mrad permanent magnet, large silicon strip detectors, full acceptance ARICH

EMPHATIC → phase 1 detector development

Aerogel threshold Cherenkov detector

n	π threshold [GeV/c]	K threshold [GeV/c]	p threshold [GeV/c]
1.004	1.6	5.5	10.5
1.012	0.9	3.2	6.0

Magnet

- 2σ π/K separation < 7 GeV/c
- 1σ π/K separation < 11 GeV/c

Conclusions

- Hadron production measurements are limiting factor in neutrino measurements done by a single detector
- Both, thin and replica target data are needed for <5% neutrino flux uncertainty
- Data covering hadron interactions below 15 GeV/c are sparse
- We need a consistent way to measure and publish hadron production data
- NA61/SHINE and EMPHATIC are planning new data-taking campaigns
- NA61/SHINE is the only experiment currently running that can take replica target data
- EMPHATIC has been designed with a very specific goal → this allows for a cleaner, more effective design, at reduced cost.

BACKUP

Thin vs. replica target tuning in T2K

- T2K neutrino flux simulation with the NA61/SHINE replica target tuning predicts
 5% lower flux
- Issues with interaction probability?

HARP (Hadron Production Experiment)

- CERN PS
- Beam momentum: 1.5-15 GeV/c
- Targets: A = 1-200
- p+A→ π[±] (3-12 GeV/c): Phys.Rev. C80 (2009)
 035208
- π[±]+A→ π[±] (3-12 GeV/c): Nucl.Phys. A821 (2009) 118-192)
- p+N2, O2→ π[±] (12 GeV/c): Astropart.Phys. 30 (2008) 124-132)
- Low angle configuration 0-250 mrad
- High angle configuration 350 2150 mrad
- Systematics: 5% due to re-interactions

MIPP (The Main Injector Particle Production Experiment)

- Secondary beam from the Main Injector
- Targets: H, D, Be, C, N, Cu, Bi, U, NuMI
- Beam: π, K, p, beam momentum: 5 120 GeV/c
 (primary and secondary beam)
- p₊: 0-2 GeV/c
- p_z: 0-80 GeV/c

NA49

- **CERN SPS**
- Main physics goal is not related to neutrino physics
- Beam: 158 GeV/c
- p+p, p+A, A+A collisions
- p+C measurements are useful for NuMI flux predictions
- Systematics: 3-8%

Calorimeter

