First detection of solar neutrinos from the CNO cycle with Borexino

> Gioacchino Ranucci INFN - Milano

On behalf of the Borexino Collaboration

June 23, 2020

The Borexino detector @ Gran Sasso

Active volume 280 tons of liquid scintillator

Detection principle $v_x + e \rightarrow v_x + e$

Elastic scattering off the electrons of the scintillator threshold at ~ 60 keV (electron energy)

2020 Jun 23

Standard Solar Model : "engine" of the Sun, solar neutrinos production and spectrum predictions

G. Ranucci - First detection of solar neutrinos from CNO cycle with Borexino

The Borexino quest for CNO neutrinos after the complete pp chain measurement $CNO v - pep v - {}^{210}Bi$ correlations

- Borexino data
- CNO v expected spectrum
- ²¹⁰Bi spectrum
- pep v spectrum

The **spectral fit** returns only the sum of **CNO** and ²¹⁰**Bi**, if both are left free

Note also the low rates:

- R(CNO v)_{expected} ~ 3-5 cpd/100ton
- R(²¹⁰Bi) ~ 10 cpd/100ton
- R(pep) ~ 2.5 cpd/100ton

Thanks to Borexino unprecedented purity @ 95% C.L ²³²Th< 5.7 10⁻¹⁹ g/g ²³⁸U < 9.4 10⁻²⁰ g/g other backgrounds less relevant apart the cosmogenic ¹¹C

The pep flux can be constrained at the 1.4 % level through the solar luminosity constraint coupled to SSM predictions on the pp to pep rate ratio and the most recent oscillation parameters - J. Bergström et al., JHEP, 2016:132, 2016

²¹⁰Bi independent determination from ²¹⁰Po

Degeneracy in the fit removable with a constraint on ²¹⁰Bi

Independent estimation of ²¹⁰Bi rate

²¹⁰Bi-²¹⁰Po analysis: Extract the ²¹⁰Bi decay rate in Borexino through the study of the ²¹⁰Po decay rate

²¹⁰Pb $\xrightarrow{\beta^-}_{32 \text{ y}}$ ²¹⁰Bi $\xrightarrow{\beta^-}_{7.23 \text{ d}}$ ²¹⁰Po $\xrightarrow{\alpha}_{199.1 \text{ d}}$ ²⁰⁶Pb

²¹⁰Po is "easier" to identify wrt ²¹⁰Bi:

- Monoenergetic decay \rightarrow "gaussian" peak
- α decay \rightarrow pulse shape discrimination

If the ²¹⁰Bi is in equilibrium with ²¹⁰Po, an independent measurement of the latter decay rate gives directly the ²¹⁰Bi one (secular equilibrium scenario)

\rightarrow The quest for CNO is turned into the quest of ²¹⁰Bi through ²¹⁰Po !

Posters: "Strategy of detection of solar CNO neutrinos with Borexino Phase-III data" Xuefeng Ding #438 session 2 "Borexino Sensitivity Studies towards Detection of Solar Neutrinos from the CNO Fusion Cycle" Ömer Penek #235 session 3 2020 Jun 23

Hurdle - diffusion and convection of ²¹⁰Po from the vessel surface

²¹⁰Po moves from the vessel surface into the scintillator and within the scintillator itself \rightarrow getting moved by diffusion and temperature induced convection

Pure exponential decay ($t_{1/2}$ =138.4 days) to the intrinsic value is perturbed by the presence of strong convective motions (purple blobs), caused mostly the seasonal and man-made temperature change in the experimental Hall

$$\partial_t \rho(r) = D\nabla^2 \rho(r) - \frac{\rho(r)}{\tau_{\rm Po}} \implies \rho(r) = \rho_0 \frac{\sinh(r/\lambda)}{r/\lambda} \qquad \qquad \begin{array}{c} \text{Diffusion length in PC} \\ \lambda = \sqrt{D \, \tau_{Po}} \approx 20 \, {\rm cm} \end{array}$$

Even tiny amount of ²¹⁰Pb – source of ²¹⁰Po - present on vessel surface are relevant at the Borexino extreme radiopurity level

without taking compensating measures convection is dominant

2020 Jun 23

Multiple approaches to monitor, understand, and suppress the temperature variation & variations

Thermal insulation & Active Gradient Stabilization System

Temperature monitoring probes

Fluid dynamical simulation Very good agreement with measured temperatures

- Double layer of mineral wool (thermal conductivity down to 0.03 W/m/K) & Active Gradient Stabilization System (2014-2016)
- Temperature Probes (2014-2015)

V. di Marcello et al., NIM A 964, id. 163801

- Fluid dynamical simulations
- Hall C Temperature Stabilization (2019)

Enduring effort over the past six years

2020 Jun 23

Top-Bottom gradient and active temperature control system

Poster "Temperature Stabilization of the BOREXINO Detector for the CNO Quest" Aldo Ianni and Nicola Rossi #297 session 4

Key to ensuring a static liquid condition was the establishment of a stable topbottom temperature gradient

The bottom temperature was established by the rock temperature

The water in the serpentines controls the top temperature \rightarrow top-bottom gradient stabilized

2020 Jun 23

Temperature evolution from the probes

Probes resolution 0.07 °C

2020 Jun 23

A 2D detailed view - Polonium data spatial mapping vs. time

Cube Label

Convective condition before insulation

Stabilization measures were very effective at reducing the ²¹⁰Po motion

- 1. Beginning of the Insulation Program
- 2. Turning off the water recirculation system in the Water Tank
- 3. Start of the active temperature control system operations
- 4. Change of the active control set points
- 5. Installation and commissioning of the Hall C temperature control system.

2020 Jun 23

Prediction of ²¹⁰Po volumetric pattern – Fluid dynamical simulation with the insulation cover of the Water Tank and the measured temperature profiles

²¹⁰Po rate vs. time within the vessel (initial condition and final solution displayed) taking into account a surface distribution on the wall of the vessel. The simulation describes the migration due to the residual convective motion post-insulation

Predicted more residual "turbulence" (and hence Polonium) in the bottom and the dynamical formation of a "minimum" ²¹⁰Po region above the equator, unaffected by the ²¹⁰Po influx from the surface

2020 Jun 23

²¹⁰Bi upper limit from ²¹⁰Po data

- ²¹⁰Po (alpha) events are fitted to find the minimum ²¹⁰Po rate in the subregion
- Low Polonium Field (LPoF) at around 80cm above equator, but it moves over time very slowly
- "Aligning" the data:
 - 1. Fit paraboloid/spline over monthly data
 - 2. Extract z-position (z0) over time $\mathbb{E}_{\mathbb{N}}$
 - Create "aligned" dataset where each data point is shifted with the z0 from the previous month. This reduces bias in the final result.

Distribution of ²¹⁰Po events in the blindly aligned data-set

Reconstructed central position of LPoF over time for different methods

2020 Jun 23

Fitting the aligned ²¹⁰Po data

Spline fit:

Account for complexity along the z axis with a cubic spline model using a Bayesian nested sampling algorithm

Both methods agree within systematics:

R _{min} (cpd/100t)	σ_{fit}	σ_{mass}	$\sigma_{binning}$	σ_{210} Bi homog.	σ_eta leak	$\sigma_{ extsf{Total}}$
11.5	0.88	0.36	0.31	See next slides	0.30	See next slides

2020 Jun 23

²¹⁰Bi spatial uniformity systematics

²¹⁰Bi constraint based on 20t region analysis

 \rightarrow CNO analysis: implicitly extrapolating the ²¹⁰Bi constraint from the LPoF to the larger FV mass (70t)

Precision level we state ²¹⁰Bi uniformity in

the FV?" \rightarrow systematic to the ²¹⁰Bi spatial $-^{210}$ Bi $-^{11}$ C $-^{85}$ Kr $-^{210}$ Po $-v(^{7}Be) -v(CNO) -v(pep)$ 10^{4} Events / (day \times 100t \times 1.00 npe) 10^{2} Energy region 10^{2} 250 300 350 400 450 500 550 600 150 200 Rec. energy [NHitsNorm]

Analyzing β spatial distribution of events in a large energy range (0.554 MeV < E < 0.904 MeV)

- \rightarrow ~75% neutrinos
- \rightarrow ~15% ²¹⁰Bi
- \rightarrow ~10% ¹¹C and ⁸⁵Kr

Rate variations are attributed to ²¹⁰Bi events (conservative approach)

²¹⁰Bi spatial uniformity systematics

0.51 cpd/100t

2020 Jun 23

0.59 cpd/100t

Overall ²¹⁰Bi spatial uniformity systematics: 0.78 cpd/100t

Simulation of the ²¹⁰Pb/²¹⁰Bi uniformity

Evolution of an initial non uniform ²¹⁰Pb/²¹⁰Bi distribution preinsulation and with the experimental temperature distributions at that time \rightarrow **uniformity** reached in 1 year in the entire inner vessel

²¹⁰Po and ²¹⁰Bi final numerical assessment

²¹⁰Pb
$$\xrightarrow[(23y)]{\beta^{-}}$$
 ²¹⁰Bi $\xrightarrow[(5d)]{\beta^{-}}$ ²¹⁰Po $\xrightarrow[(138d)]{\alpha}$ ²⁰⁶Pb (stable) Basis of the approach

²¹⁰Po rate inferred from the Low Polonium Field with all errors

$R_{min}(cpd/100t)$	σ_{fit}	σ_{mass}	$\sigma_{binning}$	$\sigma_{}_{}^{}$ 210Bi homog.	σ_eta leak	σ_{Total}
11.5	0.88	0.36	0.31	0.78	0.30	1.3

The ²¹⁰Po evaluated rate still possibly contaminated with residual ²¹⁰Po from the vessel surface \rightarrow upper limit to the rate of ²¹⁰Bi

R(²¹⁰Bi) ≤ 11.5 ± 1.3 cpd/100t

Sought constraint essential to break the degeneracy with CNO → Outcome of the relentless years-long effort to stabilize the detector and understand the ²¹⁰Po behavior in the Inner Vessel

Poster: "Extraction of ²¹⁰Bi via ²¹⁰Po for CNO neutrino detection with Borexino" Sindhujha Kumaran, Davide Basilico, Xuefeng Ding and Alexandre Göttel #212 session 3

CNO-v analysis: Phase-III MV fit

Radial position

Systematic sources and final CNO-v result

Significance of CNO-v detection

Likelihood ratio test

Determination of the q_0 discovery test statistic from the likelihood with and without the CNO signal

G. Cowan et al., Eur. Phys. J. C, 71:1554,2011

13.8 millions pseudo-datasets

with deformed PDFs and no CNO to determine the q_0 reference distribution

q_0 (data) from the real dataset

From the MC distributions **p-value** of q_0 (grey curve) with respect to q_0 (data) (black line) \rightarrow correspondingly **significance** greater than **5** σ at 99% CL

Consistent with **5.1**^o through the log-likelihood from the fit folded with uncertainties

No CNO hypothesis disfavored at 5 σ

With these results Borexino marks the first detection ever of CNO solar neutrinos

Posters: "Spectral fit of Borexino Phase-III data for the detection of CNO solar neutrinos" Zara Bagdasarian, Davide Basilico, Giulio Settanta #238 session 2

"The Borexino Monte Carlo simulations for the CNO neutrino detection" Davide Basilico #181 session 2

2020 Jun 23

Result corroborated by a simplified Counting

Analysis

We perform a counting analysis in a Region of Interest (ROI) determined maximizing a S/B Figure of Merit and using an analytical modeling of the detector response.

Species ($\rm S_{i})$	Events	Fraction	
Ν	$\textbf{823} \pm \textbf{28.7}$		
²¹⁰ Bi	$\textbf{261.5} \pm \textbf{29.6}$	0.31	
ν (pep)	171.7 ± 2.4	0.21	
$\nu(^7\text{Be})$	86.8 ± 2.6	0.10	
^{11}C	57.9 ± 5.8	0.07	
Others	15.6 ± 1.6	0.02	
$\sum_i S_i$	593.5 ± 30.4	0.71	
$N-\sum_i S_i$	229.5 ± 41.8	0.29	

Number of expected events of ²¹⁰Bi and pep neutrinos in the ROI is calculated according to the same bounds used in the MV fit

For the other species we use a reference response model of the detector

Systematics are obtained as the width of the distribution of the CNO rate after varying parameters on 10⁴ Toy-MC realizations where we determine the number of CNO events by subtracting all the other species from the total events in the ROI.

$$R_{\nu(\text{CNO})} = (5.6 \pm 1.6) \,\text{cpd}/100t \quad [\sim 3.5 \,\sigma]$$

The multivariate fit fully exploits all the information contained in the data and substantially enhances the CNO significance

Poster: "Counting analysis of Borexino Phase-III data for the detection of CNO solar neutrinos" Riccardo Biondi #93 session 2

Consistent

detection

signal

Compendium of the results

The enduring Borexino quest of the CNO neutrinos has finally produced the first observation of the signal

2020 Jun 23

Conclusion

The undeterred, several years long effort to thermally stabilize the detector has resulted in the first detection of **CNO** neutrinos by Borexino

Significance of the detection 5σ

With this outcome Borexino has completely unraveled the two processes powering the Sun

the pp Chain and the CNO Cycle

Other posters: "Data quality and stability of the Borexino detector" Chiara Ghiano #189 session 2 "New limits on non-standard neutrino interaction parameters from Borexino data" A. Vishneva et al. #582 session 2 "The measurement of the geo-neutrino flux with the Borexino detector and its geophysical implications" Maxim Gromov and Sindhujha Kumaran #274 session 2

"Search for low-energy Borexino's signals correlated with gamma-ray bursts, solar flares and gravitational wave events" A. Derbin #57 session 4

Borexino Collaboration

2020 Jun 23

Low Polonium Field inside the scintillator

Three-dimensional view of the ²¹⁰Po activity inside the entire Inner Vessel - the innermost blueish region contains the LPoF (black grid) - the white grid is the software-defined Fiducial Volume

2020 Jun 23

²¹⁰Bi spatial uniformity systematics angular and radial derivations

Linear fit performed over the variable r/r_0 where r_0 is the radius of the sphere surrounding the analysis fiducial volume

data are found compatible with a uniform distribution within 0.5 cpd/100t

Angular spectral density of observed β events in the ²¹⁰Bi ROI (black points) compared with 10000 uniform event distributions from Monte Carlo simulations at one (dark pink) and two σ CL (pink) data are found compatible with uniform distribution within the uncertainty of 0.59 cpd/100t - inset: angular distribution of the β rate in the ²¹⁰Bi ROI

The three distributions in the multivariate fit

Instrumentation of the detector for thermal stabilization and monitoring

Borexino Water Tank after the completion of the thermal insulation layer

Distribution of temperature probes around and inside the Borexino detector

Table of solar v fluxes with SSM HZ/LZ

	GS98	AGSS09met	Obs
$\Phi(pp)$	$5.98(1 \pm 0.006)$	$6.03(1 \pm 0.005)$	$5.971^{+0.037}_{-0.033}$
$\Phi(\mathrm{pep})$	$1.44(1 \pm 0.01)$	$1.46(1 \pm 0.009)$	1.448 ± 0.013
$\Phi(\mathrm{hep})$	$7.98(1 \pm 0.30)$	$8.25(1 \pm 0.30)$	19^{+12}_{-9}
$\Phi(^7\text{Be})$	$4.93(1 \pm 0.06)$	$4.50(1 \pm 0.06)$	$4.80^{+0.24}_{-0.22}$
$\Phi(^{8}B)$	$5.46(1 \pm 0.12)$	$4.50(1 \pm 0.12)$	$5.16^{+0.13}_{-0.09}$
$\Phi(^{13}N)$	$2.78(1 \pm 0.15)$	$2.04(1 \pm 0.14)$	≤ 13.7
$\Phi(^{15}\text{O})$	$2.05(1 \pm 0.17)$	$1.44(1 \pm 0.16)$	≤ 2.8
$\Phi(^{17}\mathrm{F})$	$5.29(1 \pm 0.20)$	$3.26(1 \pm 0.18)$	≤ 85

Neutrino fluxes for the two HZ and LZ SSM as determined by J. Bergstrom et al., JHEP 03, p. 132 (2016) - the fluxes are given in units of 10¹⁰ (pp), 10⁹ (⁷Be), 10⁸ (pep, ¹³N, ¹⁵O), 10⁶ (⁸B,¹⁷F), and 10³ (hep) cm⁻² s⁻¹

2D log-likelihood plots with respect to CNO and ²¹⁰Bi

Intervals from the normalized likelihood

