

Future Uses of CEvNS

Raimund Strauss Technical University of Munich 23.06.2020

Future of CEvNS

What?

Future of CEvNS

What?

So what ?

Fundamental neutrino interactions

 Precision test of SM
 BSM physics

 Sterile neutrinos

 Nuclear physics
 Reactor physics
 Dark Matter
 Solar physics
 Supernova physics

TECHNOLOGY

Small-scale neutrino detectors

Application for non-proliferation

Future of CEvNS

What?

So what ?

TECHNOLOGY

Small-scale neutrino detectors

Application for non-proliferation

Intense in rate Clean in background MeV energies

- High flux: 10²⁰nu / s (power reactors)
- Intense at MeV energies to max. 10MeV
- "Low-energy" correlated backgrounds (shieldable)
- Realistic goal:

v-spectrum uncertainties: 3% (work in progress)

courtesy M. Vivier, CEA, "NeNuFar project"

Intense in rate Clean in background MeV energies

Nuclear-recoil response

• High rate at low energies O(1) event / 10g / day

Potentially high signal / background

- Clear material dependence ~N²
 - ✓ Smoking gun signal
 - ✓ Background discrimination

Intense in rate Clean in background MeV energies Sub-keV threshold Compact shielding Small mass (g-kg)

Shallow site (<100m.w.e) **High** muon rate

Nuclear-recoil response

- High rate at low energies O(1) event / 10g / day
- Potentially high signal / background
- Clear material dependence ~N²
 - ✓ Smoking gun signal
 - ✓ Background discrimination

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

Commercial p-type point-contact **HPGe** detectors (m≈4kg) Threshold: 300eV_{ee}

Multi-layer passive shielding + efficient muon veto

Comprehensive background studies performed! Eur. Phys. J. C (2019) 79:699

- 2.4σ excess at Neutrino2018
- More run1 data (up to Nov 2018) -> lower signif.
- CONUS run2 (2019) stable data taking
- 100kg upgrade planned (CONUS100)

"At the edge of the first observation at reactors!"

Impact of Energy Threshold

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

75 cm

CEVNS

*

2.7GW_{th}

5×1012 cm-2s-1

2

28m

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

Liquid Xe TPC

- 160kg fiducial volume
- Commissioned on ground level!

Reactor Sites		
		bie I.
Kalinin, Rus	ssia	
Power	3.2	2GW _{th}
Cores		4
Baseline		10m
ν-flux	5×10 ¹³ c	m ⁻² s ⁻¹

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

Mass: 6g each

Total payload: 50g Si (fiducial)

<u>Future:</u> 10kg skipper CCD experiment (VIOLETA)

Poster	
#289	B. Vergara

arXiv:1906.02200 arXiv:1910.04951

Reactor S	Sites
Angra, Brazil	
Power	3.8GW _{th}
Cores	1
Baseline	30m
ν-flux	7×10 ¹² cm ⁻² s ⁻¹

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

Reactor Sites Reactor Experiments Poster #587 R. Chen RICOCHET Experiment **Detector** Energy Status threshold ILL, France O(1keV_{nr}) Ge Running CONUS arXiv:1612.09035 ionization Power Cryocube - array O(1keV_{nr}) Ge Running **TEXONO** Cores ionization **Baseline** O(1keV_{nr}) Ge commissi Nu-GEN ionization oning 9×1011 cm-2s-1 ν-flux O(1keV_{nr}) Liquid Xe Construc **RED-100** TPC tion CCD (Si) ~300eV_{nr} running CONNIE Q-array $O(100 eV_{nr})$ Cryogenic commissi MINER (mK) oning **RED20** Ge detector Cryogenic 55eV_{nr} RICOCHET construc Low threshold (mK) tion demonstrated: $E_{th} = 55 eV_{nr}$ Cryogenic 20eV_{nr} construc NUCLEUS m = 32gFridge purchased (mK) tion R&D on Zn detectors Dry refrigerator

58MW_{th}

1

10m

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

2L XPERI	J S Ment

NUCLEUS

commissioned

in May 2020

fridge

Lowest energy threshold for nuclear recoils E_{th} = (19.7±0.8) eV

Poster 2020 #397 A. Erhart

> arXiv:1704.04320 arXiv:1704.04317

CHOOZ, Fr	ance	
Power	4.25	GW _{th}
Cores		2
Baseline	70-	-100m
ν-flux	2×10 ¹²	cm ⁻² s ⁻¹

Reactor Sites

New experimental site @CHOOZ

arXiv:1905.10258

Experiment	Detector	Energy threshold	Status
CONUS	Ge ionization	O(1keV _{nr})	Running
TEXONO	Ge ionization	O(1keV _{nr})	Running
Nu-GEN	Ge ionization	O(1keV _{nr})	commissi oning
RED-100	Liquid Xe TPC	O(1keV _{nr})	Construc tion
CONNIE	CCD (Si)	~300eV _{nr}	running
MINER	Cryogenic (mK)	O(100eV _{nr})	commissi oning
RICOCHET	Cryogenic (mK)	55eV _{nr}	construc tion
NUCLEUS	Cryogenic (mK)	20eV _{nr}	construc tion

New experiments, R&D project, interested experiments:

NEON @ Hanbit reactor, South Korea

- R&D ongoing, goal: E_{th} = 2keV_{nr}
- Phase 1 with 50kg payload ~2023

Nal scintillation detectors

Poster	
#103	J. Choi

BASKET, BULLKID...

NEWS-G, CYGNUS...

Lab Experiments - Perspectives

Precision 10%

Limited by statistics

PHASE 2 Experiments

NUCLEUS 1kg

Scale-up target mass

Improve background/threshold

Precision 2-3% Limited by reactor systematics

PHASE 3 Ideas

Use radioactive neutrino sources at well-shielded sites e.g. ⁵¹Cr source arXiv:1905.10611

So What?

Standard model cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T} = \frac{G_F^2 M}{\pi} G_V^2 \left\{ 1 - \frac{MT}{2E_\nu^2} \right\} \quad \text{with} \quad G_V = \left[g_V^p \cdot Z + g_V^n \cdot N \right] \cdot F_V(Q^2)$$

Precision tests of the Standard Model

Weak vector

nuclear Form factor

(**=1** at reactors)

 $+\frac{1}{2}-2\sin^2\theta_W$

So What?

Standard parametrization of modified CNNS cross-section:

K.Scholberg, Phys. Rev. D 73, 033005 (2006)

BSM physics - New heavy mediators

$$\begin{pmatrix} \frac{d\sigma}{dE} \end{pmatrix}_{\nu_{\alpha}A} = \frac{G_F^2 M}{\pi} F^2(2ME) \left[1 - \frac{ME}{2k^2} \right] \times$$

$$\{ [Z(g_V^p + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV}) + N(g_V^n + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV})]^2$$

Additional neutrino-quark couplings

So What?

Standard parametrization of modified CNNS cross-section:

K.Scholberg, Phys. Rev. D 73, 033005 (2006)

Assumptions:

Target mass: 10g

Material: $CaWO_4 + Al_2O_3$

Measurement time: 1 year

Precision on σ_{7s} : 10%

BSM physics - New heavy mediators

$$\begin{pmatrix} \frac{d\sigma}{dE} \end{pmatrix}_{\nu_{\alpha}A} = \frac{G_F^2 M}{\pi} F^2 (2ME) \left[1 - \frac{ME}{2k^2} \right] \times$$

$$\{ [Z(g_V^p + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV}) + N(g_V^n + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV})]^2$$

Additional neutrino-quark couplings

Break degeneracy + constrain parameter space with multitarget, precision experiments at reactors!

So, what more?

More fundamental neutrino physics

- Neutrino magnetic dipole moment
- Neutrino charge radii
- Sterile neutrinos

Reactor physics

Reactor monitoring for Society

New generation IBD experiments

→ Next-generation CEvNS experiments

٠

٠

Non-proliferation of

weapon-grade material

Breeding of plutonium

M. Bowen, P. Huber, arXiv:2005.10907

C. Awe

NEUTRINO

A. Tomi

Poster

#477

TALK

Th25 10:30

Complementarity

CEvNS at Stopped-

pion-source

- Slightly in-coherent
- Medium neutrino
 energies

Nuclear physics e.g. neutron rms radius arXiv:1710.02730

CEvNS at reactors

- Fully coherent
- Low neutrino
 energies

Natural Sources

- XENON, LZ close to observation of ⁸B neutrinos from the Sun
- Sensitivity to Solar physics, metallicity problem etc.
- Continue searches for Dark Matter beyond the neutrino floor?
- Low-mass DM searches (CRESST, NEWS-G, CDMS...): measure pp flux ?

- Flavour-insensitive probe of neutrinos from core-collapse supernovae
- XENONnT, LZ on path arXiv:1606.09243
- Interesting new experimental ideas RES-NOVA

arXiv:2004.06936

Future Uses of CEvNS

- **CEvNS**: Blooming and very active field!
- Huge **complementarity** between COHERENT and reactor-based experiments
- Phase 1 Experiments NOW!
 - ✓ Demonstrate detector technology
 - ✓ Observe CEvNS at reactors
 - \checkmark Competitive SM and BSM physics results
- Phase 2 Experiments ~ 2024 -
 - ✓ Precision physics✓ Exploit full CEvNS physics potential
- Large-Scale Dark Matter Searches
 - ✓ Reach "neutrino floor" soon
 - \checkmark Solar and supernova physics

